These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
542 related articles for article (PubMed ID: 32399586)
1. Generative approach for data augmentation for deep learning-based bone surface segmentation from ultrasound images. Zaman A; Park SH; Bang H; Park CW; Park I; Joung S Int J Comput Assist Radiol Surg; 2020 Jun; 15(6):931-941. PubMed ID: 32399586 [TBL] [Abstract][Full Text] [Related]
2. Semi-supervised segmentation of lesion from breast ultrasound images with attentional generative adversarial network. Han L; Huang Y; Dou H; Wang S; Ahamad S; Luo H; Liu Q; Fan J; Zhang J Comput Methods Programs Biomed; 2020 Jun; 189():105275. PubMed ID: 31978805 [TBL] [Abstract][Full Text] [Related]
3. Cross-modality (CT-MRI) prior augmented deep learning for robust lung tumor segmentation from small MR datasets. Jiang J; Hu YC; Tyagi N; Zhang P; Rimner A; Deasy JO; Veeraraghavan H Med Phys; 2019 Oct; 46(10):4392-4404. PubMed ID: 31274206 [TBL] [Abstract][Full Text] [Related]
4. SpeckleGAN: a generative adversarial network with an adaptive speckle layer to augment limited training data for ultrasound image processing. Bargsten L; Schlaefer A Int J Comput Assist Radiol Surg; 2020 Sep; 15(9):1427-1436. PubMed ID: 32556953 [TBL] [Abstract][Full Text] [Related]
5. Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks. Sandfort V; Yan K; Pickhardt PJ; Summers RM Sci Rep; 2019 Nov; 9(1):16884. PubMed ID: 31729403 [TBL] [Abstract][Full Text] [Related]
6. Using deep learning to generate synthetic B-mode musculoskeletal ultrasound images. Cronin NJ; Finni T; Seynnes O Comput Methods Programs Biomed; 2020 Nov; 196():105583. PubMed ID: 32544777 [TBL] [Abstract][Full Text] [Related]
7. CT2US: Cross-modal transfer learning for kidney segmentation in ultrasound images with synthesized data. Song Y; Zheng J; Lei L; Ni Z; Zhao B; Hu Y Ultrasonics; 2022 May; 122():106706. PubMed ID: 35149255 [TBL] [Abstract][Full Text] [Related]
8. 2S-BUSGAN: A Novel Generative Adversarial Network for Realistic Breast Ultrasound Image with Corresponding Tumor Contour Based on Small Datasets. Luo J; Zhang H; Zhuang Y; Han L; Chen K; Hua Z; Li C; Lin J Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896706 [TBL] [Abstract][Full Text] [Related]
9. Automatic Segmentation of Multiple Organs on 3D CT Images by Using Deep Learning Approaches. Zhou X Adv Exp Med Biol; 2020; 1213():135-147. PubMed ID: 32030668 [TBL] [Abstract][Full Text] [Related]
10. Bone shadow segmentation from ultrasound data for orthopedic surgery using GAN. Alsinan AZ; Patel VM; Hacihaliloglu I Int J Comput Assist Radiol Surg; 2020 Sep; 15(9):1477-1485. PubMed ID: 32656685 [TBL] [Abstract][Full Text] [Related]
11. Learning from adversarial medical images for X-ray breast mass segmentation. Shen T; Gou C; Wang FY; He Z; Chen W Comput Methods Programs Biomed; 2019 Oct; 180():105012. PubMed ID: 31421601 [TBL] [Abstract][Full Text] [Related]
12. Auto-segmentation of the tibia and femur from knee MR images via deep learning and its application to cartilage strain and recovery. Kim-Wang SY; Bradley PX; Cutcliffe HC; Collins AT; Crook BS; Paranjape CS; Spritzer CE; DeFrate LE J Biomech; 2023 Mar; 149():111473. PubMed ID: 36791514 [TBL] [Abstract][Full Text] [Related]
13. Robust real-time bone surfaces segmentation from ultrasound using a local phase tensor-guided CNN. Wang P; Vives M; Patel VM; Hacihaliloglu I Int J Comput Assist Radiol Surg; 2020 Jul; 15(7):1127-1135. PubMed ID: 32430694 [TBL] [Abstract][Full Text] [Related]
14. A cGAN-based tumor segmentation method for breast ultrasound images. You G; Qin Y; Zhao C; Zhao Y; Zhu K; Yang X; Li YL Phys Med Biol; 2023 Jun; 68(13):. PubMed ID: 37276866 [No Abstract] [Full Text] [Related]
15. Ultrasound Image Segmentation: A Deeply Supervised Network With Attention to Boundaries. Mishra D; Chaudhury S; Sarkar M; Soin AS IEEE Trans Biomed Eng; 2019 Jun; 66(6):1637-1648. PubMed ID: 30346279 [TBL] [Abstract][Full Text] [Related]
16. Image generation by GAN and style transfer for agar plate image segmentation. Andreini P; Bonechi S; Bianchini M; Mecocci A; Scarselli F Comput Methods Programs Biomed; 2020 Feb; 184():105268. PubMed ID: 31891902 [TBL] [Abstract][Full Text] [Related]
17. Multi-modal brain tumor segmentation via conditional synthesis with Fourier domain adaptation. Khalil YA; Ayaz A; Lorenz C; Weese J; Pluim J; Breeuwer M Comput Med Imaging Graph; 2024 Mar; 112():102332. PubMed ID: 38245925 [TBL] [Abstract][Full Text] [Related]
18. Explainability and controllability of patient-specific deep learning with attention-based augmentation for markerless image-guided radiotherapy. Terunuma T; Sakae T; Hu Y; Takei H; Moriya S; Okumura T; Sakurai H Med Phys; 2023 Jan; 50(1):480-494. PubMed ID: 36354286 [TBL] [Abstract][Full Text] [Related]
19. pix2xray: converting RGB images into X-rays using generative adversarial networks. Haiderbhai M; Ledesma S; Lee SC; Seibold M; Fürnstahl P; Navab N; Fallavollita P Int J Comput Assist Radiol Surg; 2020 Jun; 15(6):973-980. PubMed ID: 32342258 [TBL] [Abstract][Full Text] [Related]
20. Semi-supervised GAN-based Radiomics Model for Data Augmentation in Breast Ultrasound Mass Classification. Pang T; Wong JHD; Ng WL; Chan CS Comput Methods Programs Biomed; 2021 May; 203():106018. PubMed ID: 33714900 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]