These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 32400021)
1. Development and optimization of N-acetylneuraminic acid biosensors in Bacillus subtilis. Zhang X; Cao Y; Liu Y; Liu L; Li J; Du G; Chen J Biotechnol Appl Biochem; 2020 Jul; 67(4):693-705. PubMed ID: 32400021 [TBL] [Abstract][Full Text] [Related]
2. [Development of biosensors highly responsive to Sun J; Cao Y; Lü X; Li J; Liu L; DU G; Chen J; Liu Y Sheng Wu Gong Cheng Xue Bao; 2023 Jun; 39(5):2502-2516. PubMed ID: 37401606 [No Abstract] [Full Text] [Related]
3. Modular pathway engineering of key carbon-precursor supply-pathways for improved N-acetylneuraminic acid production in Bacillus subtilis. Zhang X; Liu Y; Liu L; Wang M; Li J; Du G; Chen J Biotechnol Bioeng; 2018 Sep; 115(9):2217-2231. PubMed ID: 29896807 [TBL] [Abstract][Full Text] [Related]
4. Pathway Engineering of Bacillus subtilis for Enhanced N-Acetylneuraminic Acid Production via Whole-Cell Biocatalysis. Zhao L; Tian R; Shen Q; Liu Y; Liu L; Li J; Du G Biotechnol J; 2019 Jul; 14(7):e1800682. PubMed ID: 30925011 [TBL] [Abstract][Full Text] [Related]
5. Inducible Population Quality Control of Engineered Cao Y; Tian R; Lv X; Li J; Liu L; Du G; Chen J; Liu Y ACS Synth Biol; 2021 Sep; 10(9):2197-2209. PubMed ID: 34404207 [TBL] [Abstract][Full Text] [Related]
7. Development of N-acetylneuraminic acid responsive biosensors based on the transcriptional regulator NanR. Peters G; De Paepe B; De Wannemaeker L; Duchi D; Maertens J; Lammertyn J; De Mey M Biotechnol Bioeng; 2018 Jul; 115(7):1855-1865. PubMed ID: 29532902 [TBL] [Abstract][Full Text] [Related]
8. Pathway optimization and key enzyme evolution of N-acetylneuraminate biosynthesis using an in vivo aptazyme-based biosensor. Yang P; Wang J; Pang Q; Zhang F; Wang J; Wang Q; Qi Q Metab Eng; 2017 Sep; 43(Pt A):21-28. PubMed ID: 28780284 [TBL] [Abstract][Full Text] [Related]
9. Engineering of Synthetic Multiplexed Pathways for High-Level Zhang X; Wang C; Lv X; Liu L; Li J; Du G; Wang M; Liu Y J Agric Food Chem; 2021 Dec; 69(49):14868-14877. PubMed ID: 34851104 [No Abstract] [Full Text] [Related]
10. Microbial production of sialic acid and sialylated human milk oligosaccharides: Advances and perspectives. Zhang X; Liu Y; Liu L; Li J; Du G; Chen J Biotechnol Adv; 2019; 37(5):787-800. PubMed ID: 31028787 [TBL] [Abstract][Full Text] [Related]
11. Synthetic N-terminal coding sequences for fine-tuning gene expression and metabolic engineering in Bacillus subtilis. Tian R; Liu Y; Chen J; Li J; Liu L; Du G; Chen J Metab Eng; 2019 Sep; 55():131-141. PubMed ID: 31288083 [TBL] [Abstract][Full Text] [Related]
12. Development of inducer-free expression plasmids based on IPTG-inducible promoters for Bacillus subtilis. Tran DTM; Phan TTP; Huynh TK; Dang NTK; Huynh PTK; Nguyen TM; Truong TTT; Tran TL; Schumann W; Nguyen HD Microb Cell Fact; 2017 Jul; 16(1):130. PubMed ID: 28743271 [TBL] [Abstract][Full Text] [Related]
13. Construction, Model-Based Analysis, and Characterization of a Promoter Library for Fine-Tuned Gene Expression in Bacillus subtilis. Liu D; Mao Z; Guo J; Wei L; Ma H; Tang Y; Chen T; Wang Z; Zhao X ACS Synth Biol; 2018 Jul; 7(7):1785-1797. PubMed ID: 29944832 [TBL] [Abstract][Full Text] [Related]
14. Bacillus subtilis biosensor engineered to assess meat spoilage. Daszczuk A; Dessalegne Y; Drenth I; Hendriks E; Jo E; van Lente T; Oldebesten A; Parrish J; Poljakova W; Purwanto AA; van Raaphorst R; Boonstra M; van Heel A; Herber M; van der Meulen S; Siebring J; Sorg RA; Heinemann M; Kuipers OP; Veening JW ACS Synth Biol; 2014 Dec; 3(12):999-1002. PubMed ID: 25524109 [TBL] [Abstract][Full Text] [Related]
15. Expanding the Dynamic Range of a Transcription Factor-Based Biosensor in Dabirian Y; Li X; Chen Y; David F; Nielsen J; Siewers V ACS Synth Biol; 2019 Sep; 8(9):1968-1975. PubMed ID: 31373795 [TBL] [Abstract][Full Text] [Related]
16. Creating an in vivo bifunctional gene expression circuit through an aptamer-based regulatory mechanism for dynamic metabolic engineering in Bacillus subtilis. Deng J; Chen C; Gu Y; Lv X; Liu Y; Li J; Ledesma-Amaro R; Du G; Liu L Metab Eng; 2019 Sep; 55():179-190. PubMed ID: 31336181 [TBL] [Abstract][Full Text] [Related]
17. Design of a Whole-Cell Biosensor Based on Bacillus subtilis Spores and the Green Fluorescent Protein To Monitor Arsenic. Valenzuela-García LI; Alarcón-Herrera MT; Ayala-García VM; Barraza-Salas M; Salas-Pacheco JM; Díaz-Valles JF; Pedraza-Reyes M Microbiol Spectr; 2023 Aug; 11(4):e0043223. PubMed ID: 37284752 [TBL] [Abstract][Full Text] [Related]
18. Autoregulation of subtilin biosynthesis in Bacillus subtilis: the role of the spa-box in subtilin-responsive promoters. Kleerebezem M; Bongers R; Rutten G; de Vos WM; Kuipers OP Peptides; 2004 Sep; 25(9):1415-24. PubMed ID: 15374645 [TBL] [Abstract][Full Text] [Related]
19. Development of a whole-cell biosensor for detection of antibiotics targeting bacterial cell envelope in Bacillus subtilis. Yin J; Cheng D; Zhu Y; Liang Y; Yu Z Appl Microbiol Biotechnol; 2022 Jan; 106(2):789-798. PubMed ID: 35015142 [TBL] [Abstract][Full Text] [Related]