These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 32400022)
1. Variations on a theme: Morphological variation in the secondary eye visual pathway across the order of Araneae. Long SM J Comp Neurol; 2021 Feb; 529(2):259-280. PubMed ID: 32400022 [TBL] [Abstract][Full Text] [Related]
2. Visual pathways in the brain of the jumping spider Marpissa muscosa. Steinhoff POM; Uhl G; Harzsch S; Sombke A J Comp Neurol; 2020 Jul; 528(11):1883-1902. PubMed ID: 31960432 [TBL] [Abstract][Full Text] [Related]
3. The central nervous system of whip spiders (Amblypygi): Large mushroom bodies receive olfactory and visual input. Sinakevitch I; Long SM; Gronenberg W J Comp Neurol; 2021 May; 529(7):1642-1658. PubMed ID: 32978799 [TBL] [Abstract][Full Text] [Related]
4. Two visual systems in one brain: neuropils serving the principal eyes of the spider Cupiennius salei. Strausfeld NJ; Weltzien P; Barth FG J Comp Neurol; 1993 Feb; 328(1):63-75. PubMed ID: 7679123 [TBL] [Abstract][Full Text] [Related]
5. The synganglion of the jumping spider Marpissa muscosa (Arachnida: Salticidae): Insights from histology, immunohistochemistry and microCT analysis. Steinhoff PO; Sombke A; Liedtke J; Schneider JM; Harzsch S; Uhl G Arthropod Struct Dev; 2017 Mar; 46(2):156-170. PubMed ID: 27845202 [TBL] [Abstract][Full Text] [Related]
6. Allometry and ecology shape eye size evolution in spiders. Chong KL; Grahn A; Perl CD; Sumner-Rooney L Curr Biol; 2024 Jul; 34(14):3178-3188.e5. PubMed ID: 38959880 [TBL] [Abstract][Full Text] [Related]
7. Two visual systems in one brain: neuropils serving the secondary eyes of the spider Cupiennius salei. Strausfeld NJ; Barth FG J Comp Neurol; 1993 Feb; 328(1):43-62. PubMed ID: 7679122 [TBL] [Abstract][Full Text] [Related]
8. Topographically distinct visual and olfactory inputs to the mushroom body in the Swallowtail butterfly, Papilio xuthus. Kinoshita M; Shimohigasshi M; Tominaga Y; Arikawa K; Homberg U J Comp Neurol; 2015 Jan; 523(1):162-82. PubMed ID: 25209173 [TBL] [Abstract][Full Text] [Related]
9. Compartmentalization of the precheliceral neuroectoderm in the spider Cupiennius salei: development of the arcuate body, optic ganglia, and mushroom body. Doeffinger C; Hartenstein V; Stollewerk A J Comp Neurol; 2010 Jul; 518(13):2612-32. PubMed ID: 20503430 [TBL] [Abstract][Full Text] [Related]
10. Tyrosine hydroxylase immunolabeling reveals the distribution of catecholaminergic neurons in the central nervous systems of the spiders Hogna lenta (Araneae: Lycosidae) and Phidippus regius (Araneae: Salticidae). Auletta A; Rue MCP; Harley CM; Mesce KA J Comp Neurol; 2020 Feb; 528(2):211-230. PubMed ID: 31343075 [TBL] [Abstract][Full Text] [Related]
11. Mushroom bodies in Reptantia reflect a major transition in crustacean brain evolution. Strausfeld NJ; Sayre ME J Comp Neurol; 2020 Feb; 528(2):261-282. PubMed ID: 31376285 [TBL] [Abstract][Full Text] [Related]
12. Brain composition in Godyris zavaleta, a diurnal butterfly, Reflects an increased reliance on olfactory information. Montgomery SH; Ott SR J Comp Neurol; 2015 Apr; 523(6):869-91. PubMed ID: 25400217 [TBL] [Abstract][Full Text] [Related]
13. Comparative neuroanatomy of the central nervous system in web-building and cursorial hunting spiders. Steinhoff POM; Harzsch S; Uhl G J Comp Neurol; 2023 Nov; 532(2):e25554. PubMed ID: 37948052 [TBL] [Abstract][Full Text] [Related]
14. Mushroom body evolution demonstrates homology and divergence across Pancrustacea. Strausfeld NJ; Wolff GH; Sayre ME Elife; 2020 Mar; 9():. PubMed ID: 32124731 [TBL] [Abstract][Full Text] [Related]
15. Evolutionary morphology of the hemolymph vascular system of basal araneomorph spiders (Araneae: Araneomorphae). Huckstorf K; Michalik P; Ramírez M; Wirkner CS Arthropod Struct Dev; 2015 Nov; 44(6 Pt B):609-21. PubMed ID: 26143524 [TBL] [Abstract][Full Text] [Related]
16. Visual inputs to the mushroom body calyces of the whirligig beetle Dineutus sublineatus: modality switching in an insect. Lin C; Strausfeld NJ J Comp Neurol; 2012 Aug; 520(12):2562–74. PubMed ID: 22684942 [TBL] [Abstract][Full Text] [Related]
17. Neuronal organization of the hemiellipsoid body of the land hermit crab, Coenobita clypeatus: correspondence with the mushroom body ground pattern. Wolff G; Harzsch S; Hansson BS; Brown S; Strausfeld N J Comp Neurol; 2012 Sep; 520(13):2824-46. PubMed ID: 22547177 [TBL] [Abstract][Full Text] [Related]
18. An insect-like mushroom body in a crustacean brain. Wolff GH; Thoen HH; Marshall J; Sayre ME; Strausfeld NJ Elife; 2017 Sep; 6():. PubMed ID: 28949916 [TBL] [Abstract][Full Text] [Related]
19. Visual fields and eye morphology support color vision in a color-changing crab-spider. Insausti TC; Defrize J; Lazzari CR; Casas J Arthropod Struct Dev; 2012 Mar; 41(2):155-63. PubMed ID: 22309704 [TBL] [Abstract][Full Text] [Related]