BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 32400081)

  • 1. Protection and Isolation of Bioorthogonal Metal Catalysts by Using Monolayer-Coated Nanozymes.
    Zhang X; Fedeli S; Gopalakrishnan S; Huang R; Gupta A; Luther DC; Rotello VM
    Chembiochem; 2020 Oct; 21(19):2759-2763. PubMed ID: 32400081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioorthogonal nanozymes: an emerging strategy for disease therapy.
    Zhang Z; Fan K
    Nanoscale; 2022 Dec; 15(1):41-62. PubMed ID: 36512377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradable ZnS-Supported Bioorthogonal Nanozymes with Enhanced Catalytic Activity for Intracellular Activation of Therapeutics.
    Zhang X; Lin S; Huang R; Gupta A; Fedeli S; Cao-Milán R; Luther DC; Liu Y; Jiang M; Li G; Rondon B; Wei H; Rotello VM
    J Am Chem Soc; 2022 Jul; 144(28):12893-12900. PubMed ID: 35786910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ activation of therapeutics through bioorthogonal catalysis.
    Wang W; Zhang X; Huang R; Hirschbiegel CM; Wang H; Ding Y; Rotello VM
    Adv Drug Deliv Rev; 2021 Sep; 176():113893. PubMed ID: 34333074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inorganic nanoparticles as scaffolds for bioorthogonal catalysts.
    Hirschbiegel CM; Zhang X; Huang R; Cicek YA; Fedeli S; Rotello VM
    Adv Drug Deliv Rev; 2023 Apr; 195():114730. PubMed ID: 36791809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymer-Based Bioorthogonal Nanocatalysts for the Treatment of Bacterial Biofilms.
    Huang R; Li CH; Cao-Milán R; He LD; Makabenta JM; Zhang X; Yu E; Rotello VM
    J Am Chem Soc; 2020 Jun; 142(24):10723-10729. PubMed ID: 32464057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioorthogonal nanozymes for breast cancer imaging and therapy.
    Zhang X; Liu Y; Doungchawee J; Castellanos-García LJ; Sikora KN; Jeon T; Goswami R; Fedeli S; Gupta A; Huang R; Hirschbiegel CM; Cao-Milán R; Majhi PKD; Cicek YA; Liu L; Jerry DJ; Vachet RW; Rotello VM
    J Control Release; 2023 May; 357():31-39. PubMed ID: 36948419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanozymes: created by learning from nature.
    Zhang R; Fan K; Yan X
    Sci China Life Sci; 2020 Aug; 63(8):1183-1200. PubMed ID: 31974863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts.
    Tonga GY; Jeong Y; Duncan B; Mizuhara T; Mout R; Das R; Kim ST; Yeh YC; Yan B; Hou S; Rotello VM
    Nat Chem; 2015 Jul; 7(7):597-603. PubMed ID: 26100809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanomaterial-based bioorthogonal nanozymes for biological applications.
    Fedeli S; Im J; Gopalakrishnan S; Elia JL; Gupta A; Kim D; Rotello VM
    Chem Soc Rev; 2021 Dec; 50(24):13467-13480. PubMed ID: 34787131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradable Antibacterial Bioorthogonal Polymeric Nanocatalysts Prepared by Flash Nanoprecipitation.
    Fedeli S; Huang R; Oz Y; Zhang X; Gupta A; Gopalakrishnan S; Makabenta JMV; Lamkin S; Sanyal A; Xu Y; Rotello VM
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):15260-15268. PubMed ID: 36920076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of Intra- versus Extracellular Bioorthogonal Catalysis Using Surface-Engineered Nanozymes.
    Das R; Landis RF; Tonga GY; Cao-Milán R; Luther DC; Rotello VM
    ACS Nano; 2019 Jan; 13(1):229-235. PubMed ID: 30516966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoluminescent AuCu bimetallic nanoclusters as pH sensors and catalysts.
    Chen PC; Ma JY; Chen LY; Lin GL; Shih CC; Lin TY; Chang HT
    Nanoscale; 2014 Apr; 6(7):3503-7. PubMed ID: 24562311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solubilization of Hydrophobic Catalysts Using Nanoparticle Hosts.
    Jeong Y; Tonga GY; Duncan B; Yan B; Das R; Sahub C; Rotello VM
    Small; 2018 Feb; 14(7):. PubMed ID: 29271047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. All-natural gelatin-based bioorthogonal catalysts for efficient eradication of bacterial biofilms.
    Nabawy A; Huang R; Luther DC; Zhang X; Li CH; Makabenta JM; Rotello VM
    Chem Sci; 2022 Oct; 13(41):12071-12077. PubMed ID: 36349111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porphyrin complexes of the period 6 main group and late transition metals.
    Lemon CM; Brothers PJ; Boitrel B
    Dalton Trans; 2011 Jul; 40(25):6591-609. PubMed ID: 21384031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial metalloenzymes via encapsulation of hydrophobic transition-metal catalysts in surface-crosslinked micelles (SCMs).
    Zhang S; Zhao Y
    Chem Commun (Camb); 2012 Oct; 48(80):9998-10000. PubMed ID: 22935642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of Ligands and Metals on the Formation of Metallacyclic Intermediates and a Nontraditional Mechanism for Group VI Alkyne Metathesis Catalysts.
    Thompson RR; Rotella ME; Zhou X; Fronczek FR; Gutierrez O; Lee S
    J Am Chem Soc; 2021 Jun; 143(24):9026-9039. PubMed ID: 34110130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytically active nanomaterials: a promising candidate for artificial enzymes.
    Lin Y; Ren J; Qu X
    Acc Chem Res; 2014 Apr; 47(4):1097-105. PubMed ID: 24437921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modular Fabrication of Bioorthogonal Nanozymes for Biomedical Applications.
    Huang R; Hirschbiegel CM; Lehot V; Liu L; Cicek YA; Rotello VM
    Adv Mater; 2024 Mar; 36(10):e2300943. PubMed ID: 37042795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.