These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 32400429)

  • 21. Silicon technologies for arrays of Single Photon Avalanche Diodes.
    Gulinatti A; Ceccarelli F; Rech I; Ghioni M
    Proc SPIE Int Soc Opt Eng; 2016 Apr; 9858():. PubMed ID: 27761058
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flexible ultrathin-body single-photon avalanche diode sensors and CMOS integration.
    Sun P; Ishihara R; Charbon E
    Opt Express; 2016 Feb; 24(4):3734-48. PubMed ID: 26907030
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New silicon technologies enable high-performance arrays of Single Photon Avalanche Diodes.
    Gulinatti A; Rech I; Maccagnani P; Cova S; Ghioni M
    Proc SPIE Int Soc Opt Eng; 2013 May; 8727():87270M-. PubMed ID: 24353395
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photon-Counting Arrays for Time-Resolved Imaging.
    Antolovic IM; Burri S; Hoebe RA; Maruyama Y; Bruschini C; Charbon E
    Sensors (Basel); 2016 Jun; 16(7):. PubMed ID: 27367697
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fast single-photon avalanche diode arrays for laser Raman spectroscopy.
    Blacksberg J; Maruyama Y; Charbon E; Rossman GR
    Opt Lett; 2011 Sep; 36(18):3672-4. PubMed ID: 21931428
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Scaling Law for SPAD Pixel Miniaturization.
    Morimoto K; Charbon E
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34063394
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Avalanche Transients of Thick 0.35 µm CMOS Single-Photon Avalanche Diodes.
    Goll B; Steindl B; Zimmermann H
    Micromachines (Basel); 2020 Sep; 11(9):. PubMed ID: 32961756
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid fabrication of diffractive optical elements by use of image-based excimer laser ablation.
    Wang X; Leger JR; Rediker RH
    Appl Opt; 1997 Jul; 36(20):4660-5. PubMed ID: 18259262
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling and Analysis of Capacitive Relaxation Quenching in a Single Photon Avalanche Diode (SPAD) Applied to a CMOS Image Sensor.
    Inoue A; Okino T; Koyama S; Hirose Y
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32466348
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An investigation of signal performance enhancements achieved through innovative pixel design across several generations of indirect detection, active matrix, flat-panel arrays.
    Antonuk LE; Zhao Q; El-Mohri Y; Du H; Wang Y; Street RA; Ho J; Weisfield R; Yao W
    Med Phys; 2009 Jul; 36(7):3322-39. PubMed ID: 19673228
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Experimental determination of the "collimator monitoring fill factor" and its relation to the error detection capabilities of various 2D-arrays.
    Stelljes TS; Poppinga D; Kretschmer J; Brodbek L; Looe HK; Poppe B
    Med Phys; 2019 Apr; 46(4):1863-1873. PubMed ID: 30707450
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimization and theoretical modeling of polymer microlens arrays fabricated with the hydrophobic effect.
    Hartmann DM; Kibar O; Esener SC
    Appl Opt; 2001 Jun; 40(16):2736-46. PubMed ID: 18357291
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Temporal and Spatial Focusing in SPAD-Based Solid-State Pulsed Time-of-Flight Laser Range Imaging.
    Kostamovaara J; Jahromi SS; Keränen P
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33105586
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Background Light Rejection in SPAD-Based LiDAR Sensors by Adaptive Photon Coincidence Detection.
    Beer M; Haase JF; Ruskowski J; Kokozinski R
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544791
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design and characterization of a p+/n-well SPAD array in 150nm CMOS process.
    Xu H; Pancheri L; Betta GD; Stoppa D
    Opt Express; 2017 May; 25(11):12765-12778. PubMed ID: 28786630
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication and Characterization of Curved Compound Eyes Based on Multifocal Microlenses.
    Lian G; Liu Y; Tao K; Xing H; Huang R; Chi M; Zhou W; Wu Y
    Micromachines (Basel); 2020 Sep; 11(9):. PubMed ID: 32947769
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Theoretical investigation of the count rate capabilities of in-pixel amplifiers for photon counting arrays based on polycrystalline silicon TFTs.
    Liang AK; Koniczek M; Antonuk LE; El-Mohri Y; Zhao Q
    Med Phys; 2018 Oct; 45(10):4418-4429. PubMed ID: 30106180
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Organic-inorganic-hybrid-polymer microlens arrays with tailored optical characteristics and multi-focal properties.
    Jacot-Descombes L; Cadarso VJ; Schleunitz A; Grützner S; Klein JJ; Brugger J; Schift H; Grützner G
    Opt Express; 2015 Sep; 23(19):25365-76. PubMed ID: 26406732
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A high numerical aperture, polymer-based, planar microlens array.
    Tripathi A; Chokshi TV; Chronis N
    Opt Express; 2009 Oct; 17(22):19908-18. PubMed ID: 19997214
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A 48-pixel array of Single Photon Avalanche Diodes for multispot Single Molecule analysis.
    Gulinatti A; Rech I; Maccagnani P; Ghioni M
    Proc SPIE Int Soc Opt Eng; 2013 Feb; 8631():86311D-. PubMed ID: 24357913
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.