These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 32400500)

  • 1. Improving the transmission efficiency of the Cassegrain optical system for Bessel-Gaussian beams.
    Liu R; Yang H; Jiang P; Qin Y; Caiyang W; Cao B; Zhou M; Mao S
    Appl Opt; 2020 Apr; 59(12):3736-3741. PubMed ID: 32400500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure design of a conic lens pair for improving the transmission efficiency of a Cassegrain antenna.
    Zhou M; Yang H; Jiang P; Qin Y; Caiyang W; Mao S; Cao B
    Appl Opt; 2019 May; 58(13):3410-3417. PubMed ID: 31044836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fiber coupling efficiency of a Bessel-Gaussian beam received by a Cassegrain antenna under atmospheric turbulence.
    Shang S; Zhang J; Qi Y; Zeng B; Jiang P; Yang H
    Appl Opt; 2022 Aug; 61(23):6871-6878. PubMed ID: 36255767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Research for propagation properties of LG beam through Cassegrain antenna system in a turbulent atmosphere.
    Qin Y; Yang H; Jiang P; Caiyang W; Zhou M; Mao S; Cao B
    Opt Express; 2020 May; 28(10):14436-14447. PubMed ID: 32403484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate analysis of the efficiency of Bessel Gauss beams passing through two Cassegrain optical antennas in atmospheric turbulence.
    Shang S; Yang H; Jiang P
    Opt Express; 2022 Oct; 30(22):40032-40043. PubMed ID: 36298948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Set of mathematical models for Bessel-Gauss beams coupling into the parabolic-index fiber under the influence of atmospheric turbulence and random jitter.
    Shang S; Li X; Deng W; Wang Y; Han Y; Su H; Yang H; Jiang P
    Opt Express; 2023 Jul; 31(15):24157-24172. PubMed ID: 37475249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of a dual hollow beam optical antenna based on a Fresnel lens-conical lens combination.
    Li Y; Zhong L; Fu S; Qin Y; Liu J; Jiang P; Yang H
    J Opt Soc Am A Opt Image Sci Vis; 2024 May; 41(5):749-756. PubMed ID: 38856561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cassegrain antenna for a laser diode source using an E-A system to improve the transmission efficiency.
    Zhang X; Yang H; Jiang P; Zhou M; Caiyang W; Qin Y; Cao B
    Appl Opt; 2021 Aug; 60(23):6829-6836. PubMed ID: 34613162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperbola-parabola primary mirror in Cassegrain optical antenna to improve transmission efficiency.
    Zhang L; Chen L; Yang H; Jiang P; Mao S; Caiyang W
    Appl Opt; 2015 Aug; 54(24):7148-53. PubMed ID: 26368746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Power coupling of a two-Cassegrain-telescopes system in turbulent atmosphere in a slant path.
    Chu X; Zhou G
    Opt Express; 2007 Jun; 15(12):7697-707. PubMed ID: 19547098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffraction characteristics of a Laguerre-Gaussian beam through a Maksutov-Cassegrain optical system.
    Ke X; Wang J; Wang M; Tan Z
    Appl Opt; 2018 Apr; 57(10):2570-2576. PubMed ID: 29714242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on power coupling of annular vortex beam propagating through a two-Cassegrain-telescope optical system in turbulent atmosphere.
    Wu H; Sheng S; Huang Z; Zhao S; Wang H; Sun Z; Xu X
    Opt Express; 2013 Feb; 21(4):4005-16. PubMed ID: 23481935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial light coupled into a single-mode fiber by a Maksutov-Cassegrain antenna through atmospheric turbulence.
    Ke X; Lei S
    Appl Opt; 2016 May; 55(15):3897-902. PubMed ID: 27411112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of a single-mode fiber coupling system based on the modified Gerchberg-Saxton algorithm.
    Qiao J; Shen J; Jiang P; Caiyang W; Yang H
    Appl Opt; 2022 Dec; 61(35):10380-10389. PubMed ID: 36607096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deformations of circularly polarized Bessel vortex beam reflected and transmitted by a uniaxial anisotropic slab.
    Li H; Liu J; Bai L; Wu Z
    Appl Opt; 2018 Sep; 57(25):7353-7362. PubMed ID: 30182956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of perfect optical vortices using a Bessel-Gaussian beam diffracted by curved fork grating.
    Karahroudi MK; Parmoon B; Qasemi M; Mobashery A; Saghafifar H
    Appl Opt; 2017 Jul; 56(21):5817-5823. PubMed ID: 29047895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integral momenta of vortex Bessel-Gaussian beams in turbulent atmosphere.
    Lukin IP
    Appl Opt; 2016 Apr; 55(12):B61-6. PubMed ID: 27140133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bessel-Gauss beams as rigorous solutions of the Helmholtz equation.
    April A
    J Opt Soc Am A Opt Image Sci Vis; 2011 Oct; 28(10):2100-7. PubMed ID: 21979515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Freeform reflector antenna design method to improve transmission efficiency and control output intensity distribution.
    Zhang J; Jiang P; Yang H; Caiyang W; Cao B; Niu Y; Wang M
    Appl Opt; 2020 Sep; 59(25):7567-7573. PubMed ID: 32902456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design optical antenna and fiber coupling system based on the vector theory of reflection and refraction.
    Jiang P; Yang H; Mao S
    Opt Express; 2015 Oct; 23(20):26104-12. PubMed ID: 26480125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.