These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32400508)

  • 1. Optimization of a lightweight mirror with reduced sensitivity to the mount location.
    Jiang P; Zhou P
    Appl Opt; 2020 Apr; 59(12):3799-3805. PubMed ID: 32400508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and optimization of integrated flexure mounts for unloading lateral gravity of a lightweight mirror for space application.
    Zhang L; Wang T; Zhang F; Zhao H; Zhao Y; Zheng X
    Appl Opt; 2021 Jan; 60(2):417-426. PubMed ID: 33448967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and optimization of the tripod flexure for a 2m lightweight mirror for space application.
    Jiang P; Xue C; Wang K; Wang X; Zhou P
    Appl Opt; 2023 Jan; 62(1):217-226. PubMed ID: 36606868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal design of a Φ760 mm lightweight SiC mirror and the flexural mount for a space telescope.
    Li Z; Chen X; Wang S; Jin G
    Rev Sci Instrum; 2017 Dec; 88(12):125107. PubMed ID: 29289167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and Optimization for Mounting Primary Mirror with Reduced Sensitivity to Temperature Change in an Aerial Optoelectronic Sensor.
    Zhang M; Lu Q; Tian H; Wang D; Chen C; Wang X
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topology-optimization-based design method of flexures for mounting the primary mirror of a large-aperture space telescope.
    Hu R; Liu S; Li Q
    Appl Opt; 2017 May; 56(15):4551-4560. PubMed ID: 29047887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of lightweight structure and supporting bipod flexure for a space mirror.
    Chen YC; Huang BK; You ZT; Chan CY; Huang TM
    Appl Opt; 2016 Dec; 55(36):10382-10391. PubMed ID: 28059268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Application of a Topology Optimization Algorithm Based on the Kriging Surrogate Model in the Mirror Design and Optimization of an Aerial Camera.
    Zhao Y; Li L
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of an adjustable bipod flexure for a large-aperture mirror of a space camera.
    Liu B; Wang W; Qu YJ; Li XP; Wang X; Zhao H
    Appl Opt; 2018 May; 57(15):4048-4055. PubMed ID: 29791378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization Design of Large-Aperture Primary Mirror for a Space Remote Camera.
    Liu X; Gu K; Li M; Cheng Z
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stress mirror polishing for future large lightweight mirrors: design using shape optimization.
    Lemared S; Ferrari M; Du Jeu C; Dufour T; Soulier N; Hugot E
    Opt Express; 2020 Apr; 28(9):14055-14071. PubMed ID: 32403868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryogenic mount for mirror and piezoelectric actuator for an optical cavity.
    Oliveira AN; Moreira LS; Sacramento RL; Kosulic L; Brasil VB; Wolff W; Cesar CL
    Rev Sci Instrum; 2017 Jun; 88(6):063104. PubMed ID: 28668005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optomechanical integrated optimization of a lightweight mirror for space cameras.
    Shao M; Zhang L; Jia X
    Appl Opt; 2021 Jan; 60(3):539-546. PubMed ID: 33690426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topology optimization-based lightweight primary mirror design of a large-aperture space telescope.
    Liu S; Hu R; Li Q; Zhou P; Dong Z; Kang R
    Appl Opt; 2014 Dec; 53(35):8318-25. PubMed ID: 25608076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contributions of Support Point Number to Mirror Assembly Thermal Sensitivity Control.
    Li H; Zhang H; Ding Y; Zhang J; Cai Y
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and optimization for main support structure of a large-area off-axis three-mirror space camera.
    Wei L; Zhang L; Gong X; Ma DM
    Appl Opt; 2017 Feb; 56(4):1094-1100. PubMed ID: 28158118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adjustable flexure mount to compensate for deformation of an optic surface.
    Feng Z; Jie Y; Li-Ping W; Yuan-Ming L; Hai-Tao Z; Quan M; Qiang L; Ran B; Hui W; Chun-Shui J
    Appl Opt; 2019 Dec; 58(34):9370-9375. PubMed ID: 31873527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of space active optics for a whiffletree supported mirror.
    Zhou P; Zhang D; Liu G; Yan C
    Appl Opt; 2019 Jul; 58(21):5740-5747. PubMed ID: 31503873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracting the zero-gravity surface figure of a mirror through multiple clockings in a flightlike hexapod mount.
    Bloemhof EE; Lam JC; Feria VA; Chang Z
    Appl Opt; 2009 Jul; 48(21):4239-45. PubMed ID: 19623238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adjustable bipod flexures for mounting mirrors in a space telescope.
    Kihm H; Yang HS; Moon IK; Yeon JH; Lee SH; Lee YW
    Appl Opt; 2012 Nov; 51(32):7776-83. PubMed ID: 23142889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.