BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 32400570)

  • 1. Active and passive optical remote sensing of the aquatic environment: introduction to the feature issue.
    Lee Z; Churnside J; Mao Z; Wu S; Zibordi G
    Appl Opt; 2020 Apr; 59(10):APS1-APS2. PubMed ID: 32400570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Information content of absorption spectra and implications for ocean color inversion.
    Cael BB; Chase A; Boss E
    Appl Opt; 2020 May; 59(13):3971-3984. PubMed ID: 32400669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bio-optical evidence for increasing
    Orkney A; Platt T; Narayanaswamy BE; Kostakis I; Bouman HA
    Philos Trans A Math Phys Eng Sci; 2020 Oct; 378(2181):20190357. PubMed ID: 32862820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lidar equation for ocean surface and subsurface.
    Josset D; Zhai PW; Hu Y; Pelon J; Lucker PL
    Opt Express; 2010 Sep; 18(20):20862-75. PubMed ID: 20940981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of inherent optical properties variability on the chlorophyll retrieval from ocean color remote sensing: an in situ approach.
    Hubert L; Lubac B; Dessailly D; Duforet-Gaurier L; Vantrepotte V
    Opt Express; 2010 Sep; 18(20):20949-59. PubMed ID: 20940990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perspectives on empirical approaches for ocean color remote sensing of chlorophyll in a changing climate.
    Dierssen HM
    Proc Natl Acad Sci U S A; 2010 Oct; 107(40):17073-8. PubMed ID: 20861445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral interdependence of remote-sensing reflectance and its implications on the design of ocean color satellite sensors.
    Lee Z; Shang S; Hu C; Zibordi G
    Appl Opt; 2014 May; 53(15):3301-10. PubMed ID: 24922219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Review of estimation on oceanic primary productivity by using remote sensing methods.].
    Xu HY; Zhou WF; Ji SJ
    Ying Yong Sheng Tai Xue Bao; 2016 Sep; 27(9):3042-3050. PubMed ID: 29732871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The global distribution and dynamics of chromophoric dissolved organic matter.
    Nelson NB; Siegel DA
    Ann Rev Mar Sci; 2013; 5():447-76. PubMed ID: 22809178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remote sensing of bacterial response to degrading phytoplankton in the Arabian Sea.
    Priyaja P; Dwivedi R; Sini S; Hatha M; Saravanane N; Sudhakar M
    Environ Monit Assess; 2016 Dec; 188(12):662. PubMed ID: 27837363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Approach for determining the contributions of phytoplankton, colored organic material, and nonalgal particles to the total spectral absorption in marine waters.
    Lin J; Cao W; Wang G; Hu S
    Appl Opt; 2013 Jun; 52(18):4249-57. PubMed ID: 23842167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deriving vertical profiles of chlorophyll-a concentration in the upper layer of seawaters using ICESat-2 photon-counting lidar.
    Zheng H; Ma Y; Huang J; Yang J; Su D; Yang F; Wang XH
    Opt Express; 2022 Aug; 30(18):33320-33336. PubMed ID: 36242374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global marine phytoplankton dynamics analysis with machine learning and reanalyzed remote sensing.
    Adhikary S; Tiwari SP; Banerjee S; Dwivedi AD; Rahman SM
    PeerJ; 2024; 12():e17361. PubMed ID: 38737741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of phytoplankton taxonomic groups in the Arctic Ocean using phytoplankton absorption properties: implication for ocean-color remote sensing.
    Zhang H; Devred E; Fujiwara A; Qiu Z; Liu X
    Opt Express; 2018 Nov; 26(24):32280-32301. PubMed ID: 30650690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of sub-pixel variations on ocean color remote sensing products.
    Lee Z; Hu C; Arnone R; Liu Z
    Opt Express; 2012 Sep; 20(19):20844-54. PubMed ID: 23037208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From silk to satellite: half a century of ocean colour anomalies in the Northeast Atlantic.
    Raitsos DE; Pradhan Y; Lavender SJ; Hoteit I; McQuatters-Gollop A; Reid PC; Richardson AJ
    Glob Chang Biol; 2014 Jul; 20(7):2117-23. PubMed ID: 24804626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing the phytoplankton soup: pump and plumbing effects on the particle assemblage in underway optical seawater systems.
    Cetinić I; Poulton N; Slade WH
    Opt Express; 2016 Sep; 24(18):20703-15. PubMed ID: 27607674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Ecology, Biogeochemistry, and Optical Properties of Coccolithophores.
    Balch WM
    Ann Rev Mar Sci; 2018 Jan; 10():71-98. PubMed ID: 29298138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing.
    Werdell PJ; McKinna LIW; Boss E; Ackleson SG; Craig SE; Gregg WW; Lee Z; Maritorena S; Roesler CS; Rousseaux CS; Stramski D; Sullivan JM; Twardowski MS; Tzortziou M; Zhang X
    Prog Oceanogr; 2018 Jan; 160():186-212. PubMed ID: 30573929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.