These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 32400598)

  • 21. Practical method for color computer-generated rainbow holograms of real-existing objects.
    Shi Y; Wang H; Li Y; Jin H; Ma L
    Appl Opt; 2009 Jul; 48(21):4219-26. PubMed ID: 19623236
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Full-color optical scanning holography with common red, green, and blue channels [Invited].
    Kim H; Kim YS; Kim T
    Appl Opt; 2016 Jan; 55(3):A17-21. PubMed ID: 26835951
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quality enhancement and GPU acceleration for a full-color holographic system using a relocated point cloud gridding method.
    Zhao Y; Kwon KC; Erdenebat MU; Islam MS; Jeon SH; Kim N
    Appl Opt; 2018 May; 57(15):4253-4262. PubMed ID: 29791403
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acceleration of computer-generated holograms using tilted wavefront recording plane method.
    Arai D; Shimobaba T; Murano K; Endo Y; Hirayama R; Hiyama D; Kakue T; Ito T
    Opt Express; 2015 Jan; 23(2):1740-7. PubMed ID: 25835929
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimized random phase tiles for non-iterative hologram generation.
    Velez-Zea A; Torroba R
    Appl Opt; 2019 Nov; 58(32):9013-9019. PubMed ID: 31873682
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep neural network for multi-depth hologram generation and its training strategy.
    Lee J; Jeong J; Cho J; Yoo D; Lee B; Lee B
    Opt Express; 2020 Aug; 28(18):27137-27154. PubMed ID: 32906972
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Implementation of full-color holographic system using non-uniformly sampled 2D images and compressed point cloud gridding.
    Zhao Y; Kwon KC; Erdenebat MU; Jeon SH; Piao ML; Kim N
    Opt Express; 2019 Oct; 27(21):29746-29758. PubMed ID: 31684232
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accelerated generation of holographic videos of 3-D objects in rotational motion using a curved hologram-based rotational-motion compensation method.
    Cao HK; Lin SF; Kim ES
    Opt Express; 2018 Aug; 26(16):21279-21300. PubMed ID: 30119433
    [TBL] [Abstract][Full Text] [Related]  

  • 29. From image pair to a computer generated hologram for a real-world scene.
    Ding S; Cao S; Zheng YF; Ewing RL
    Appl Opt; 2016 Sep; 55(27):7583-92. PubMed ID: 27661586
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiple-camera holographic system featuring efficient depth grids for representation of real 3D objects.
    Zhao Y; Erdenebat MU; Alam MS; Piao ML; Jeon SH; Kim N
    Appl Opt; 2019 Feb; 58(5):A242-A250. PubMed ID: 30873983
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Faster generation of holographic videos of objects moving in space using a spherical hologram-based 3-D rotational motion compensation scheme.
    Cao HK; Kim ES
    Opt Express; 2019 Sep; 27(20):29139-29157. PubMed ID: 31684653
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chromatic-dispersion-corrected full-color holographic display using directional-view image scaling method.
    Piao YL; Erdenebat MU; Kwon KC; Gil SK; Kim N
    Appl Opt; 2019 Feb; 58(5):A120-A127. PubMed ID: 30873968
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single SLM full-color holographic 3-D display based on sampling and selective frequency-filtering methods.
    Lin SF; Kim ES
    Opt Express; 2017 May; 25(10):11389-11404. PubMed ID: 28788821
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Real-valued layer-based hologram calculation.
    Yasuki D; Shimobaba T; Makowski M; Suszek J; Sypek M; Kakue T; Ito T
    Opt Express; 2022 Feb; 30(5):7821-7830. PubMed ID: 35299536
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid calculation algorithm of Fresnel computer-generated-hologram using look-up table and wavefront-recording plane methods for three-dimensional display.
    Shimobaba T; Nakayama H; Masuda N; Ito T
    Opt Express; 2010 Sep; 18(19):19504-9. PubMed ID: 20940846
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Full-color computer-generated hologram using wavelet transform and color space conversion.
    Yamada S; Shimobaba T; Kakue T; Ito T
    Opt Express; 2019 Mar; 27(6):8153-8167. PubMed ID: 31052638
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiple-viewpoint projection holograms synthesized by spatially incoherent correlation with broadband functions.
    Shaked NT; Rosen J
    J Opt Soc Am A Opt Image Sci Vis; 2008 Aug; 25(8):2129-38. PubMed ID: 18677376
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improvement of color reproduction in color digital holography by using spectral estimation technique.
    Xia P; Shimozato Y; Ito Y; Tahara T; Kakue T; Awatsuji Y; Nishio K; Ura S; Kubota T; Matoba O
    Appl Opt; 2011 Dec; 50(34):H177-82. PubMed ID: 22193005
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhancement of three-dimensional perception of numerical hologram reconstructions of real-world objects by motion and stereo.
    Näsänen R; Colomb T; Emery Y; Naughton TJ
    Opt Express; 2011 Aug; 19(17):16075-86. PubMed ID: 21934970
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Extended focused imaging for digital holograms of macroscopic three-dimensional objects.
    McElhinney CP; Hennelly BM; Naughton TJ
    Appl Opt; 2008 Jul; 47(19):D71-9. PubMed ID: 18594582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.