These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 32400644)

  • 1. Improving thermo-optic properties of smart windows via coupling to radiative coolers.
    Zhang E; Cao Y; Caloz C; Skorobogatiy M
    Appl Opt; 2020 May; 59(13):D210-D220. PubMed ID: 32400644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface Pattern over a Thick Silica Film to Realize Passive Radiative Cooling.
    Liu Y; Li J; Liu C
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34070026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Performance Daytime Radiative Cooler and Near-Ideal Selective Emitter Enabled by Transparent Sapphire Substrate.
    Chae D; Son S; Liu Y; Lim H; Lee H
    Adv Sci (Weinh); 2020 Oct; 7(19):2001577. PubMed ID: 33042765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving thermo-optic properties of smart windows via coupling to radiative coolers: publisher's note.
    Zhang E; Cao Y; Caloz C; Skorobogatiy M
    Appl Opt; 2020 May; 59(13):4198. PubMed ID: 32400698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling.
    Kong A; Cai B; Shi P; Yuan XC
    Opt Express; 2019 Oct; 27(21):30102-30115. PubMed ID: 31684263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectrally Selective Inorganic-Based Multilayer Emitter for Daytime Radiative Cooling.
    Chae D; Kim M; Jung PH; Son S; Seo J; Liu Y; Lee BJ; Lee H
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8073-8081. PubMed ID: 31990166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectrally Selective Nanoparticle Mixture Coating for Passive Daytime Radiative Cooling.
    Chae D; Lim H; So S; Son S; Ju S; Kim W; Rho J; Lee H
    ACS Appl Mater Interfaces; 2021 May; 13(18):21119-21126. PubMed ID: 33926186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Easy Way to Achieve Self-Adaptive Cooling of Passive Radiative Materials.
    Xia Z; Fang Z; Zhang Z; Shi K; Meng Z
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27241-27248. PubMed ID: 32437122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colloidal Photonic Assemblies for Colorful Radiative Cooling.
    Kim HH; Im E; Lee S
    Langmuir; 2020 Jun; 36(23):6589-6596. PubMed ID: 32370514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Daytime Sub-Ambient Radiative Cooling with Vivid Structural Colors Mediated by Coupled Nanocavities.
    Jin S; Xiao M; Zhang W; Wang B; Zhao C
    ACS Appl Mater Interfaces; 2022 Dec; 14(49):54676-54687. PubMed ID: 36454716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Passive radiative cooling and other photonic approaches for the temperature control of photovoltaics: a comparative study for crystalline silicon-based architectures.
    Perrakis G; Tasolamprou AC; Kenanakis G; Economou EN; Tzortzakis S; Kafesaki M
    Opt Express; 2020 Jun; 28(13):18548-18565. PubMed ID: 32672154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sub-ambient full-color passive radiative cooling under sunlight based on efficient quantum-dot photoluminescence.
    Wang X; Zhang Q; Wang S; Jin C; Zhu B; Su Y; Dong X; Liang J; Lu Z; Zhou L; Li W; Zhu S; Zhu J
    Sci Bull (Beijing); 2022 Sep; 67(18):1874-1881. PubMed ID: 36546301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scalable thermochromic smart windows with passive radiative cooling regulation.
    Wang S; Jiang T; Meng Y; Yang R; Tan G; Long Y
    Science; 2021 Dec; 374(6574):1501-1504. PubMed ID: 34914526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Daytime radiative cooler using porous TiO
    Zahir M; Benlattar M
    Appl Opt; 2020 Oct; 59(30):9400-9408. PubMed ID: 33104657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Color-preserving passive radiative cooling for an actively temperature-regulated enclosure.
    Zhu Y; Luo H; Yang C; Qin B; Ghosh P; Kaur S; Shen W; Qiu M; Belov P; Li Q
    Light Sci Appl; 2022 May; 11(1):122. PubMed ID: 35508472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiative Cooling: Principles, Progress, and Potentials.
    Hossain MM; Gu M
    Adv Sci (Weinh); 2016 Jul; 3(7):1500360. PubMed ID: 27812478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Passive and Dynamic Phase-Change-Based Radiative Cooling in Outdoor Weather.
    Xu X; Gu J; Zhao H; Zhang X; Dou S; Li Y; Zhao J; Zhan Y; Li X
    ACS Appl Mater Interfaces; 2022 Mar; 14(12):14313-14320. PubMed ID: 35302341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamically Tunable All-Weather Daytime Cellulose Aerogel Radiative Supercooler for Energy-Saving Building.
    Cai C; Wei Z; Ding C; Sun B; Chen W; Gerhard C; Nimerovsky E; Fu Y; Zhang K
    Nano Lett; 2022 May; 22(10):4106-4114. PubMed ID: 35510868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase Change Material Enhanced Radiative Cooler for Temperature-Adaptive Thermal Regulation.
    Yang M; Zhong H; Li T; Wu B; Wang Z; Sun D
    ACS Nano; 2023 Jan; ():. PubMed ID: 36633491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical Superhydrophobic Poly(vinylidene fluoride-
    Meng X; Chen Z; Qian C; Song Z; Wang L; Li Q; Chen X
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):2256-2266. PubMed ID: 36541618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.