These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 32400686)

  • 1. Thin thermally grown oxide thickness detection in thermal barrier coatings based on SWT-BP neural network algorithm and terahertz technology.
    Luo M; Zhong S; Yao L; Tu W; Nsengiyumva W; Chen W
    Appl Opt; 2020 May; 59(13):4097-4104. PubMed ID: 32400686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasonic characterization of thermal barrier coatings porosity through BP neural network optimizing Gaussian process regression algorithm.
    Ma Z; Zhang W; Luo Z; Sun X; Li Z; Lin L
    Ultrasonics; 2020 Jan; 100():105981. PubMed ID: 31479965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasonic characterization of thermally grown oxide in thermal barrier coating by reflection coefficient amplitude spectrum.
    Ma Z; Zhao Y; Luo Z; Lin L
    Ultrasonics; 2014 Apr; 54(4):1005-9. PubMed ID: 24359869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deformation Prediction Theory of Thermal Barrier Coatings near Cooling Holes under Thermal Cycling.
    Wang JX; Sun HT; Gong QT; Li FX; Li ZZ
    ACS Omega; 2023 Apr; 8(14):13048-13058. PubMed ID: 37065062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulsed terahertz spectroscopy combined with hybrid machine learning approaches for structural health monitoring of multilayer thermal barrier coatings.
    Ye D; Wang W; Yin C; Xu Z; Zhou H; Fang H; Li Y; Huang J
    Opt Express; 2020 Nov; 28(23):34875-34893. PubMed ID: 33182946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental Study of the Thermally Grown Oxide and Interface of Thermal Barrier Coatings Using TEM In-Situ Heating.
    Zhang H; Peng R; Zhao J; Fan C; Feng W; Liu Z
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Thermal Growth Oxide Composition and Morphology on Local Stresses in Thermal Barrier Coatings.
    Ding K; Zhang T; Wang Z; Yu J; Guo W; Yang Y
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on Stress Development in the Phase Transition Layer of Thermal Barrier Coatings.
    Chai Y; Lin C; Wang X; Li Y
    Materials (Basel); 2016 Sep; 9(9):. PubMed ID: 28773894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. R-peaks detection based on stationary wavelet transform.
    Merah M; Abdelmalik TA; Larbi BH
    Comput Methods Programs Biomed; 2015 Oct; 121(3):149-60. PubMed ID: 26105724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of advanced aluminide intermetallic coatings by low-energy Al-ion radiation.
    Shen M; Gu Y; Zhao P; Zhu S; Wang F
    Sci Rep; 2016 May; 6():26535. PubMed ID: 27194417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulsed-terahertz reflectometry for health monitoring of ceramic thermal barrier coatings.
    Chen CC; Lee DJ; Pollock T; Whitaker JF
    Opt Express; 2010 Feb; 18(4):3477-86. PubMed ID: 20389357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active IR Thermography Evaluation of Coating Thickness by Determining Apparent Thermal Effusivity.
    Moskovchenko A; Vavilov V; Švantner M; Muzika L; Houdková Š
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32932709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the degradation of plasma sprayed thermal barrier coatings using nano-indentation.
    Kim DJ; Cho SK; Choi JH; Koo JM; Seok CS; Kim MY
    J Nanosci Nanotechnol; 2009 Dec; 9(12):7271-7. PubMed ID: 19908771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation Behavior of the Monolayered La
    Jasik A; Moskal G; Mikuśkiewicz M; Tomaszewska A; Jucha S; Migas D; Myalska H
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32708223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nondestructive Evaluation of Carbon Fiber Reinforced Polymer Composites Using Reflective Terahertz Imaging.
    Zhang J; Li W; Cui HL; Shi C; Han X; Ma Y; Chen J; Chang T; Wei D; Zhang Y; Zhou Y
    Sensors (Basel); 2016 Jun; 16(6):. PubMed ID: 27314352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-situ evaluation of porosity in thermal barrier coatings based on the broadening of terahertz time-domain pulses: simulation and experimental investigations.
    Ye D; Wang W; Zhou H; Huang J; Wu W; Gong H; Li Z
    Opt Express; 2019 Sep; 27(20):28150-28165. PubMed ID: 31684573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying Pharmaceutical Film Coating with Optical Coherence Tomography and Terahertz Pulsed Imaging: An Evaluation.
    Lin H; Dong Y; Shen Y; Axel Zeitler J
    J Pharm Sci; 2015 Oct; 104(10):3377-3385. PubMed ID: 28739039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Multilevel-SVD Method to Improve Multistep Ahead Forecasting in Traffic Accidents Domain.
    Barba L; Rodríguez N
    Comput Intell Neurosci; 2017; 2017():7951395. PubMed ID: 28261267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying Pharmaceutical Film Coating with Optical Coherence Tomography and Terahertz Pulsed Imaging: An Evaluation.
    Lin H; Dong Y; Shen Y; Zeitler JA
    J Pharm Sci; 2015 Oct; 104(10):3377-85. PubMed ID: 26284354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photothermocapillary Method for the Nondestructive Testing of Solid Materials and Thin Coatings.
    Zykov A; Vavilov V; Kuimova M
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.