These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 32400718)

  • 1. Scintillation averaging and fade statistics.
    Shaw SEJ
    J Opt Soc Am A Opt Image Sci Vis; 2020 May; 37(5):833-840. PubMed ID: 32400718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fade statistics and aperture averaging for Gaussian beam waves in moderate-to-strong turbulence.
    Vetelino FS; Young C; Andrews L
    Appl Opt; 2007 Jun; 46(18):3780-9. PubMed ID: 17538675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical downlink propagation from space-to-earth: aperture-averaged power fluctuations, temporal covariance and power spectrum.
    Yura HT
    Opt Express; 2018 Oct; 26(21):26787-26809. PubMed ID: 30469759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal statistics of the beam-wander contribution to scintillation in ground-to-satellite optical links: an analytical approach.
    Rodriguez-Gomez A; Dios F; Rubio JA; Comeron A
    Appl Opt; 2005 Jul; 44(21):4574-81. PubMed ID: 16047909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytic propagation variances and power spectral densities from a wave-optics perspective.
    Shaw SEJ; Tomlinson EM
    J Opt Soc Am A Opt Image Sci Vis; 2019 Jul; 36(7):1267-1278. PubMed ID: 31503966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Log-amplitude variance for a Gaussian-beam wave propagating through non-Kolmogorov turbulence.
    Tan L; Du W; Ma J; Yu S; Han Q
    Opt Express; 2010 Jan; 18(2):451-62. PubMed ID: 20173865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of time averaging on optical scintillation in a ground-to-satellite atmospheric propagation.
    Toyoshima M; Araki K
    Appl Opt; 2000 Apr; 39(12):1911-9. PubMed ID: 18345087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scintillation and aperture averaging for Gaussian beams through non-Kolmogorov maritime atmospheric turbulence channels.
    Cheng M; Guo L; Zhang Y
    Opt Express; 2015 Dec; 23(25):32606-21. PubMed ID: 26699050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple transmitter performance with appropriate amplitude modulation for free-space optical communication.
    Tellez JA; Schmidt JD
    Appl Opt; 2011 Aug; 50(24):4737-45. PubMed ID: 21857696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal averaging of atmospheric turbulence-induced optical scintillation.
    Yura HT; Beck SM
    Opt Express; 2015 Aug; 23(17):22867-82. PubMed ID: 26368254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal power spectrum of irradiance fluctuations for a Gaussian-beam wave propagating through non-Kolmogorov turbulence.
    Tan L; Zhai C; Yu S; Ma J; Lu G
    Opt Express; 2015 May; 23(9):11250-63. PubMed ID: 25969221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of source spatial partial coherence on temporal fade statistics of irradiance flux in free-space optical links through atmospheric turbulence.
    Chen C; Yang H; Zhou Z; Zhang W; Kavehrad M; Tong S; Wang T
    Opt Express; 2013 Dec; 21(24):29731-43. PubMed ID: 24514524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atmospheric spectral model and theoretical expressions of irradiance scintillation index for optical wave propagating through moderate-to-strong non-Kolmogorov turbulence.
    Cui L; Xue B; Zheng S; Xue W; Bai X; Cao X; Zhou F
    J Opt Soc Am A Opt Image Sci Vis; 2012 Jun; 29(6):1091-8. PubMed ID: 22673440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atmospheric-turbulence-induced power-fade statistics for a multiaperture optical receiver.
    Belmonte A; Comerón A; Rubio JA; Bará J; Fernández E
    Appl Opt; 1997 Nov; 36(33):8632-8. PubMed ID: 18264414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical scintillations and fade statistics for a satellite-communication system.
    Andrews LC; Phillips RL; Yu PT
    Appl Opt; 1995 Nov; 34(33):7742-51. PubMed ID: 21060656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aperture averaging effects on the probability density of irradiance fluctuations in moderate-to-strong turbulence.
    Vetelino FS; Young C; Andrews L; Recolons J
    Appl Opt; 2007 Apr; 46(11):2099-108. PubMed ID: 17384726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral and angular covariance of scintillation for propagation in a randomly inhomogeneous medium.
    Fried DL
    Appl Opt; 1971 Apr; 10(4):721-31. PubMed ID: 20094532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scintillation analysis of truncated Bessel beams via numerical turbulence propagation simulation.
    Eyyuboğlu HT; Voelz D; Xiao X
    Appl Opt; 2013 Nov; 52(33):8032-9. PubMed ID: 24513754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Underwater optical communication performance for laser beam propagation through weak oceanic turbulence.
    Yi X; Li Z; Liu Z
    Appl Opt; 2015 Feb; 54(6):1273-8. PubMed ID: 25968187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probability density of aperture-averaged irradiance fluctuations for long range free space optical communication links.
    Lyke SD; Voelz DG; Roggemann MC
    Appl Opt; 2009 Nov; 48(33):6511-27. PubMed ID: 19935974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.