These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 32400794)

  • 41. S-Edge-rich Mo
    Cheng Y; Yuan P; Xu X; Guo S; Pang K; Guo H; Zhang Z; Wu X; Zheng L; Song R
    Nanoscale; 2019 Nov; 11(42):20284-20294. PubMed ID: 31633137
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Template-Directed Growth of Bimetallic Prussian Blue-Analogue Nanosheet Arrays and Their Derived Porous Metal Oxides for Oxygen Evolution Reaction.
    Cao LM; Hu YW; Zhong DC; Lu TB
    ChemSusChem; 2018 Nov; 11(21):3708-3713. PubMed ID: 30179309
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Active Electron Density Modulation of Co
    He D; Song X; Li W; Tang C; Liu J; Ke Z; Jiang C; Xiao X
    Angew Chem Int Ed Engl; 2020 Apr; 59(17):6929-6935. PubMed ID: 32100367
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rapid synthesis of Co
    Gu W; Hu L; Zhu X; Shang C; Li J; Wang E
    Chem Commun (Camb); 2018 Nov; 54(90):12698-12701. PubMed ID: 30327799
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Metallic Co4N Porous Nanowire Arrays Activated by Surface Oxidation as Electrocatalysts for the Oxygen Evolution Reaction.
    Chen P; Xu K; Fang Z; Tong Y; Wu J; Lu X; Peng X; Ding H; Wu C; Xie Y
    Angew Chem Int Ed Engl; 2015 Dec; 54(49):14710-4. PubMed ID: 26437900
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Engineering a stereo-film of FeNi
    Meng H; Ren Z; Du S; Wu J; Yang X; Xue Y; Fu H
    Nanoscale; 2018 Jun; 10(23):10971-10978. PubMed ID: 29855010
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ultrathin Co
    He Y; Zhang J; He G; Han X; Zheng X; Zhong C; Hu W; Deng Y
    Nanoscale; 2017 Jun; 9(25):8623-8630. PubMed ID: 28608902
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Coffee-Waste Templating of Metal Ion-Substituted Cobalt Oxides for the Oxygen Evolution Reaction.
    Yu M; Chan CK; Tüysüz H
    ChemSusChem; 2018 Feb; 11(3):605-611. PubMed ID: 29194977
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ni- and Mn-Promoted Mesoporous Co3O4: A Stable Bifunctional Catalyst with Surface-Structure-Dependent Activity for Oxygen Reduction Reaction and Oxygen Evolution Reaction.
    Song W; Ren Z; Chen SY; Meng Y; Biswas S; Nandi P; Elsen HA; Gao PX; Suib SL
    ACS Appl Mater Interfaces; 2016 Aug; 8(32):20802-13. PubMed ID: 27458646
    [TBL] [Abstract][Full Text] [Related]  

  • 50. N-doped nanoporous Co
    Xu L; Wang Z; Wang J; Xiao Z; Huang X; Liu Z; Wang S
    Nanotechnology; 2017 Apr; 28(16):165402. PubMed ID: 28319036
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Shifting Oxygen Charge Towards Octahedral Metal: A Way to Promote Water Oxidation on Cobalt Spinel Oxides.
    Sun S; Sun Y; Zhou Y; Xi S; Ren X; Huang B; Liao H; Wang LP; Du Y; Xu ZJ
    Angew Chem Int Ed Engl; 2019 Apr; 58(18):6042-6047. PubMed ID: 30860633
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The role of oxygen vacancies in water oxidation for perovskite cobalt oxide electrocatalysts: are more better?
    Miao X; Wu L; Lin Y; Yuan X; Zhao J; Yan W; Zhou S; Shi L
    Chem Commun (Camb); 2019 Jan; 55(10):1442-1445. PubMed ID: 30644464
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Preferential Cation Vacancies in Perovskite Hydroxide for the Oxygen Evolution Reaction.
    Chen D; Qiao M; Lu YR; Hao L; Liu D; Dong CL; Li Y; Wang S
    Angew Chem Int Ed Engl; 2018 Jul; 57(28):8691-8696. PubMed ID: 29771458
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ultrafine Co
    Zhang J; Qian B; Sun S; Tao S; Chu W; Wu D; Song L
    Small; 2019 Nov; 15(46):e1904260. PubMed ID: 31565859
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Promoting Oxygen Evolution Reaction of Co-Based Catalysts (Co
    Jin B; Li Y; Wang J; Meng F; Cao S; He B; Jia S; Wang Y; Li Z; Liu X
    Small; 2019 Oct; 15(44):e1903847. PubMed ID: 31512397
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhanced oxygen evolution over dual corner-shared cobalt tetrahedra.
    Chen Y; Seo JK; Sun Y; Wynn TA; Olguin M; Zhang M; Wang J; Xi S; Du Y; Yuan K; Chen W; Fisher AC; Wang M; Feng Z; Gracia J; Huang L; Du S; Gao HJ; Meng YS; Xu ZJ
    Nat Commun; 2022 Sep; 13(1):5510. PubMed ID: 36127321
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution.
    Jin H; Wang J; Su D; Wei Z; Pang Z; Wang Y
    J Am Chem Soc; 2015 Feb; 137(7):2688-94. PubMed ID: 25658518
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Oxygen Vacancy-rich Porous Co
    Wang X; Li X; Mu J; Fan S; Chen X; Wang L; Yin Z; Tadé M; Liu S
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):41988-41999. PubMed ID: 31622550
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tailoring Lattice Oxygen Binding in Ruthenium Pyrochlores to Enhance Oxygen Evolution Activity.
    Kuznetsov DA; Naeem MA; Kumar PV; Abdala PM; Fedorov A; Müller CR
    J Am Chem Soc; 2020 Apr; 142(17):7883-7888. PubMed ID: 32216262
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Construction of zeolitic imidazolate frameworks-derived Ni
    Xue B; Li K; Guo Y; Lu J; Gu S; Zhang L
    J Colloid Interface Sci; 2019 Dec; 557():112-123. PubMed ID: 31518833
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.