These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 32400939)
1. Rediscovering Surlyn: A Supramolecular Thermoset Capable of Healing and Recycling. Zhan S; Wang X; Sun J Macromol Rapid Commun; 2020 Dec; 41(24):e2000097. PubMed ID: 32400939 [TBL] [Abstract][Full Text] [Related]
2. Nitrogen-Coordinated Boroxines Enable the Fabrication of Mechanically Robust Supramolecular Thermosets Capable of Healing and Recycling under Mild Conditions. Bao C; Guo Z; Sun H; Sun J ACS Appl Mater Interfaces; 2019 Mar; 11(9):9478-9486. PubMed ID: 30742407 [TBL] [Abstract][Full Text] [Related]
3. Healable, Recyclable, and Mechanically Tough Polyurethane Elastomers with Exceptional Damage Tolerance. Wang X; Zhan S; Lu Z; Li J; Yang X; Qiao Y; Men Y; Sun J Adv Mater; 2020 Dec; 32(50):e2005759. PubMed ID: 33175420 [TBL] [Abstract][Full Text] [Related]
4. Remalleable, Healable, and Highly Sustainable Supramolecular Polymeric Materials Combining Superhigh Strength and Ultrahigh Toughness. Niu W; Zhu Y; Wang R; Lu Z; Liu X; Sun J ACS Appl Mater Interfaces; 2020 Jul; 12(27):30805-30814. PubMed ID: 32524813 [TBL] [Abstract][Full Text] [Related]
5. Mismatched Supramolecular Interactions Facilitate the Reprocessing of Super-Strong and Ultratough Thermoset Elastomers. Wang L; Zhang K; Zhang X; Tan Y; Guo L; Xia Y; Wang X Adv Mater; 2024 Jul; 36(28):e2311758. PubMed ID: 38758171 [TBL] [Abstract][Full Text] [Related]
6. Reversible Crosslinking of Commodity Polymers via Photocontrolled Metal-Ligand Coordination for High-Performance and Recyclable Thermoset Plastics. Huang YS; Zhou Y; Zeng X; Zhang D; Wu S Adv Mater; 2023 Oct; 35(41):e2305517. PubMed ID: 37401043 [TBL] [Abstract][Full Text] [Related]
7. Upcycling of Carbon Fiber/Thermoset Composites into High-Performance Elastomers and Repurposed Carbon Fibers. Yang T; Lu X; Wang X; Wei X; An N; Li Y; Wang W; Li X; Fang X; Sun J Angew Chem Int Ed Engl; 2024 May; 63(22):e202403972. PubMed ID: 38491769 [TBL] [Abstract][Full Text] [Related]
8. Engineering of Chain Rigidity and Hydrogen Bond Cross-Linking toward Ultra-Strong, Healable, Recyclable, and Water-Resistant Elastomers. Guo Z; Lu X; Wang X; Li X; Li J; Sun J Adv Mater; 2023 May; 35(21):e2300286. PubMed ID: 36854256 [TBL] [Abstract][Full Text] [Related]
9. Healable and Mechanically Super-Strong Polymeric Composites Derived from Hydrogen-Bonded Polymeric Complexes. An N; Wang X; Li Y; Zhang L; Lu Z; Sun J Adv Mater; 2019 Oct; 31(41):e1904882. PubMed ID: 31456254 [TBL] [Abstract][Full Text] [Related]
10. Recyclable and Mendable Cellulose-Reinforced Composites Crosslinked with Diels⁻Alder Adducts. Park K; Shin C; Song YS; Lee HJ; Shin C; Kim Y Polymers (Basel); 2019 Jan; 11(1):. PubMed ID: 30960101 [TBL] [Abstract][Full Text] [Related]
11. Complexation of Sulfonate-Containing Polyurethane and Polyacrylic Acid Enables Fabrication of Self-Healing Hydrogel Membranes with High Mechanical Strength and Excellent Elasticity. Wang Y; Fang X; Li S; Pan H; Sun J ACS Appl Mater Interfaces; 2023 May; 15(21):25082-25090. PubMed ID: 34935339 [TBL] [Abstract][Full Text] [Related]
12. Self-Healing and Recyclable Hydrogels Reinforced with in Situ-Formed Organic Nanofibrils Exhibit Simultaneously Enhanced Mechanical Strength and Stretchability. Yuan T; Qu X; Cui X; Sun J ACS Appl Mater Interfaces; 2019 Sep; 11(35):32346-32353. PubMed ID: 31407576 [TBL] [Abstract][Full Text] [Related]
13. Room-Temperature Self-Healable and Mechanically Robust Thermoset Polymers for Healing Delamination and Recycling Carbon Fibers. Feng X; Li G ACS Appl Mater Interfaces; 2021 Nov; 13(44):53099-53110. PubMed ID: 34705416 [TBL] [Abstract][Full Text] [Related]
14. Melt mixed composites of poly(ethylene-co-methacrylic acid) ionomers and multiwall carbon nanotubes: influence of specific interactions. Bose S; Bhattacharyya AR; Chawley M; Kodgire PV; Kulkarni AR; Misra A; Pötschke P J Nanosci Nanotechnol; 2008 Apr; 8(4):1721-7. PubMed ID: 18572570 [TBL] [Abstract][Full Text] [Related]
15. Recyclable, Malleable, and Strong Thermosets Enabled by Knoevenagel Adducts. Wang S; Feng H; Lim JYC; Li K; Li B; Mah JJQ; Xing Z; Zhu J; Loh XJ; Li Z J Am Chem Soc; 2024 Apr; 146(14):9920-9927. PubMed ID: 38557104 [TBL] [Abstract][Full Text] [Related]
16. Fast recovery process of carbon fibers from waste carbon fibers-reinforced thermoset plastics. Jeong JS; Kim KW; An KH; Kim BJ J Environ Manage; 2019 Oct; 247():816-821. PubMed ID: 31299557 [TBL] [Abstract][Full Text] [Related]
17. Recyclable thermosets based on modified epoxy-amine network polymers. Anderson L; Sanders EW; Unthank MG Mater Horiz; 2023 Mar; 10(3):889-898. PubMed ID: 36537891 [TBL] [Abstract][Full Text] [Related]
18. Room-temperature self-healing polyurethane-cellulose nanocrystal composites with strong strength and toughness based on dynamic bonds. Fan X; Zhang L; Dong F; Liu H; Xu X Carbohydr Polym; 2023 May; 308():120654. PubMed ID: 36813344 [TBL] [Abstract][Full Text] [Related]
19. Simultaneous Recovery of Matrix and Fiber in Carbon Reinforced Composites through a Diels-Alder Solvolysis Process. Fortunato G; Anghileri L; Griffini G; Turri S Polymers (Basel); 2019 Jun; 11(6):. PubMed ID: 31174331 [TBL] [Abstract][Full Text] [Related]
20. Recycle and Reuse of Continuous Carbon Fibers from Thermoset Composites Using Joule Heating. Sarmah A; Sarikaya S; Thiem J; Upama ST; Khalfaoui AN; Dasari SS; Arole K; Hawkins SA; Naraghi M; Vashisth A; Green MJ ChemSusChem; 2022 Nov; 15(21):e202200989. PubMed ID: 36040841 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]