These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 32400980)

  • 1. [Safety Study of Implant Wearers in MRI RF Field Environment].
    Li C; Wu X
    Zhongguo Yi Liao Qi Xie Za Zhi; 2020 Feb; 44(2):101-107. PubMed ID: 32400980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MRI-induced heating of selected thin wire metallic implants-- laboratory and computational studies-- findings and new questions raised.
    Bassen H; Kainz W; Mendoza G; Kellom T
    Minim Invasive Ther Allied Technol; 2006; 15(2):76-84. PubMed ID: 16754190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of RF heating on humerus implant in phantoms during 1.5T MR imaging and comparisons with electromagnetic simulation.
    Muranaka H; Horiguchi T; Usui S; Ueda Y; Nakamura O; Ikeda F; Iwakura K; Nakaya G
    Magn Reson Med Sci; 2006 Jul; 5(2):79-88. PubMed ID: 17008764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parallel transmit excitation at 1.5 T based on the minimization of a driving function for device heating.
    Gudino N; Sonmez M; Yao Z; Baig T; Nielles-Vallespin S; Faranesh AZ; Lederman RJ; Martens M; Balaban RS; Hansen MS; Griswold MA
    Med Phys; 2015 Jan; 42(1):359-71. PubMed ID: 25563276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RF-induced heating in tissue near bilateral DBS implants during MRI at 1.5 T and 3T: The role of surgical lead management.
    Golestanirad L; Kirsch J; Bonmassar G; Downs S; Elahi B; Martin A; Iacono MI; Angelone LM; Keil B; Wald LL; Pilitsis J
    Neuroimage; 2019 Jan; 184():566-576. PubMed ID: 30243973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of field strength on RF power deposition near conductive leads: A simulation study of SAR in DBS lead models during MRI at 1.5 T-10.5 T.
    Kazemivalipour E; Sadeghi-Tarakameh A; Keil B; Eryaman Y; Atalar E; Golestanirad L
    PLoS One; 2023; 18(1):e0280655. PubMed ID: 36701285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A numerical and experimental study of RF shimming in the presence of hip prostheses using adaptive SAR at 3 T.
    Destruel A; Fuentes M; Weber E; O'Brien K; Jin J; Liu F; Barth M; Crozier S
    Magn Reson Med; 2019 Jun; 81(6):3826-3839. PubMed ID: 30803001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electromagnetic simulation of RF burn injuries occurring at skin-skin and skin-bore wall contact points in an MRI scanner with a birdcage coil.
    Tang M; Okamoto K; Haruyama T; Yamamoto T
    Phys Med; 2021 Feb; 82():219-227. PubMed ID: 33657471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of MRI RF electromagnetic field induced heating near leads of cochlear implants.
    Zeng Q; Wang Q; Zheng J; Kainz W; Chen J
    Phys Med Biol; 2018 Jul; 63(13):135020. PubMed ID: 29893289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependence of RF heating on SAR and implant position in a 1.5T MR system.
    Muranaka H; Horiguchi T; Usui S; Ueda Y; Nakamura O; Ikeda F
    Magn Reson Med Sci; 2007; 6(4):199-209. PubMed ID: 18239357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wire-based sternal closure: MRI-related heating at 1.5 T/64 MHz and 3 T/128 MHz based on simulation and experimental phantom study.
    Zheng J; Xia M; Kainz W; Chen J
    Magn Reson Med; 2020 Mar; 83(3):1055-1065. PubMed ID: 31468593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental validation of hyperthermia SAR treatment planning using MR B1+ imaging.
    Van den Berg CA; Bartels LW; De Leeuw AA; Lagendijk JJ; Van de Kamer JB
    Phys Med Biol; 2004 Nov; 49(22):5029-42. PubMed ID: 15609556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RF Heating Analysis of Implanted lead wires under 3.0 Tesla Magnetic Resonance Imaging System.
    Wang B; Li J; Jin H; Chen X
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2516-2519. PubMed ID: 33018518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MR safety assessment of potential RF heating from cranial fixation plates at 7 T.
    Kraff O; Wrede KH; Schoemberg T; Dammann P; Noureddine Y; Orzada S; Ladd ME; Bitz AK
    Med Phys; 2013 Apr; 40(4):042302. PubMed ID: 23556915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RF safety assessment of a bilateral four-channel transmit/receive 7 Tesla breast coil: SAR versus tissue temperature limits.
    Fiedler TM; Ladd ME; Bitz AK
    Med Phys; 2017 Jan; 44(1):143-157. PubMed ID: 28102957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of implant RF heating through modification of transmit coil electric field.
    Eryaman Y; Akin B; Atalar E
    Magn Reson Med; 2011 May; 65(5):1305-13. PubMed ID: 21500259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Safety of metallic implants in magnetic resonance imaging.
    Ho HS
    J Magn Reson Imaging; 2001 Oct; 14(4):472-7. PubMed ID: 11599073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of capped and uncapped abandoned leads on the heating of an MR-conditional pacemaker implant.
    Mattei E; Gentili G; Censi F; Triventi M; Calcagnini G
    Magn Reson Med; 2015 Jan; 73(1):390-400. PubMed ID: 24436030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward 7T breast MRI clinical study: safety assessment using simulation of heterogeneous breast models in RF exposure.
    Li X; Rispoli JV
    Magn Reson Med; 2019 Feb; 81(2):1307-1321. PubMed ID: 30216530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive SAR mass-averaging framework to improve predictions of local RF heating near a hip implant for parallel transmit at 7 T.
    Destruel A; O'Brien K; Jin J; Liu F; Barth M; Crozier S
    Magn Reson Med; 2019 Jan; 81(1):615-627. PubMed ID: 30058186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.