BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 32401021)

  • 1. GalaxySagittarius: Structure- and Similarity-Based Prediction of Protein Targets for Druglike Compounds.
    Yang J; Kwon S; Bae SH; Park KM; Yoon C; Lee JH; Seok C
    J Chem Inf Model; 2020 Jun; 60(6):3246-3254. PubMed ID: 32401021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction.
    Brylinski M
    J Chem Inf Model; 2013 Nov; 53(11):3097-112. PubMed ID: 24171431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GalaxyRefineComplex: Refinement of protein-protein complex model structures driven by interface repacking.
    Heo L; Lee H; Seok C
    Sci Rep; 2016 Aug; 6():32153. PubMed ID: 27535582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GalaxySite: ligand-binding-site prediction by using molecular docking.
    Heo L; Shin WH; Lee MS; Seok C
    Nucleic Acids Res; 2014 Jul; 42(Web Server issue):W210-4. PubMed ID: 24753427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SPOT-Ligand: Fast and effective structure-based virtual screening by binding homology search according to ligand and receptor similarity.
    Yang Y; Zhan J; Zhou Y
    J Comput Chem; 2016 Jul; 37(18):1734-9. PubMed ID: 27074979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GalaxyPepDock: a protein-peptide docking tool based on interaction similarity and energy optimization.
    Lee H; Heo L; Lee MS; Seok C
    Nucleic Acids Res; 2015 Jul; 43(W1):W431-5. PubMed ID: 25969449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FINDSITE
    Zhou H; Cao H; Skolnick J
    J Chem Inf Model; 2018 Nov; 58(11):2343-2354. PubMed ID: 30278128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ProBiS-CHARMMing: Web Interface for Prediction and Optimization of Ligands in Protein Binding Sites.
    Konc J; Miller BT; Štular T; Lešnik S; Woodcock HL; Brooks BR; Janežič D
    J Chem Inf Model; 2015 Nov; 55(11):2308-14. PubMed ID: 26509288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DStruBTarget: Integrating Binding Affinity with Structure Similarity for Ligand-Binding Protein Prediction.
    Fan C; Wong PP; Zhao H
    J Chem Inf Model; 2020 Jan; 60(1):400-409. PubMed ID: 31833767
    [No Abstract]   [Full Text] [Related]  

  • 10. Binding Site Prediction of Proteins with Organic Compounds or Peptides Using GALAXY Web Servers.
    Heo L; Lee H; Baek M; Seok C
    Methods Mol Biol; 2016; 1414():33-45. PubMed ID: 27094284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple grid arrangement improves ligand docking with unknown binding sites: Application to the inverse docking problem.
    Ban T; Ohue M; Akiyama Y
    Comput Biol Chem; 2018 Apr; 73():139-146. PubMed ID: 29482137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving binding mode and binding affinity predictions of docking by ligand-based search of protein conformations: evaluation in D3R grand challenge 2015.
    Xu X; Yan C; Zou X
    J Comput Aided Mol Des; 2017 Aug; 31(8):689-699. PubMed ID: 28668990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissimilar Ligands Bind in a Similar Fashion: A Guide to Ligand Binding-Mode Prediction with Application to CELPP Studies.
    Xu X; Zou X
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein-ligand-based pharmacophores: generation and utility assessment in computational ligand profiling.
    Meslamani J; Li J; Sutter J; Stevens A; Bertrand HO; Rognan D
    J Chem Inf Model; 2012 Apr; 52(4):943-55. PubMed ID: 22480372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FRAGSITE: A Fragment-Based Approach for Virtual Ligand Screening.
    Zhou H; Cao H; Skolnick J
    J Chem Inf Model; 2021 Apr; 61(4):2074-2089. PubMed ID: 33724022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power.
    Wang Z; Sun H; Yao X; Li D; Xu L; Li Y; Tian S; Hou T
    Phys Chem Chem Phys; 2016 May; 18(18):12964-75. PubMed ID: 27108770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new protein binding pocket similarity measure based on comparison of clouds of atoms in 3D: application to ligand prediction.
    Hoffmann B; Zaslavskiy M; Vert JP; Stoven V
    BMC Bioinformatics; 2010 Feb; 11():99. PubMed ID: 20175916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Knowledge-guided docking: accurate prospective prediction of bound configurations of novel ligands using Surflex-Dock.
    Cleves AE; Jain AN
    J Comput Aided Mol Des; 2015 Jun; 29(6):485-509. PubMed ID: 25940276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HybridDock: A Hybrid Protein-Ligand Docking Protocol Integrating Protein- and Ligand-Based Approaches.
    Huang SY; Li M; Wang J; Pan Y
    J Chem Inf Model; 2016 Jun; 56(6):1078-87. PubMed ID: 26317502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Galaxy7TM: flexible GPCR-ligand docking by structure refinement.
    Lee GR; Seok C
    Nucleic Acids Res; 2016 Jul; 44(W1):W502-6. PubMed ID: 27131365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.