BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32401365)

  • 1. A suite of polymerase chain reaction-based peptide tagging plasmids for epitope-targeted enzymatic functionalization of yeast proteins.
    Nemec AA; Tomko RJ
    Yeast; 2020 May; 37(5-6):327-335. PubMed ID: 32401365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small epitope-linker modules for PCR-based C-terminal tagging in Saccharomyces cerevisiae.
    Funakoshi M; Hochstrasser M
    Yeast; 2009 Mar; 26(3):185-92. PubMed ID: 19243080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HB tag modules for PCR-based gene tagging and tandem affinity purification in Saccharomyces cerevisiae.
    Tagwerker C; Zhang H; Wang X; Larsen LS; Lathrop RH; Hatfield GW; Auer B; Huang L; Kaiser P
    Yeast; 2006 Jun; 23(8):623-32. PubMed ID: 16823883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmids with E2 epitope tags: tagging modules for N- and C-terminal PCR-based gene targeting in both budding and fission yeast, and inducible expression vectors for fission yeast.
    Tamm T
    Yeast; 2009 Jan; 26(1):55-66. PubMed ID: 19180640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expanding the repertoire of plasmids for PCR-mediated epitope tagging in yeast.
    Moqtaderi Z; Struhl K
    Yeast; 2008 Apr; 25(4):287-92. PubMed ID: 18338317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A vector system for efficient and economical switching of C-terminal epitope tags in Saccharomyces cerevisiae.
    Sung MK; Ha CW; Huh WK
    Yeast; 2008 Apr; 25(4):301-11. PubMed ID: 18350525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-ICE plasmids for generating N-terminal 3 × FLAG tagged genes that allow inducible, constitutive or endogenous expression in Saccharomyces cerevisiae.
    Zhang Y; Serratore ND; Briggs SD
    Yeast; 2017 May; 34(5):223-235. PubMed ID: 27943405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Marker-free insertion of a series of C-terminal epitopes based on the 50:50 method in Saccharomyces cerevisiae.
    Nonaka M; Kishi T
    J Gen Appl Microbiol; 2018 May; 64(2):99-102. PubMed ID: 29491249
    [No Abstract]   [Full Text] [Related]  

  • 9. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes.
    Janke C; Magiera MM; Rathfelder N; Taxis C; Reber S; Maekawa H; Moreno-Borchart A; Doenges G; Schwob E; Schiebel E; Knop M
    Yeast; 2004 Aug; 21(11):947-62. PubMed ID: 15334558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Universal plasmids to facilitate gene deletion and gene tagging in filamentous fungi.
    Qin L; Li A; Tan K; Guo S; Chen Y; Wang F; Wong KH
    Fungal Genet Biol; 2019 Apr; 125():28-35. PubMed ID: 30641126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bimolecular fluorescence complementation analysis system for in vivo detection of protein-protein interaction in Saccharomyces cerevisiae.
    Sung MK; Huh WK
    Yeast; 2007 Sep; 24(9):767-75. PubMed ID: 17534848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A PCR-based strategy to generate yeast strains expressing endogenous levels of amino-terminal epitope-tagged proteins.
    Booher KR; Kaiser P
    Biotechnol J; 2008 Apr; 3(4):524-9. PubMed ID: 18320568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method for labeling proteins with tags at the native genomic loci in budding yeast.
    Wang Q; Xue H; Li S; Chen Y; Tian X; Xu X; Xiao W; Fu YV
    PLoS One; 2017; 12(5):e0176184. PubMed ID: 28459859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Set of Plasmid-Based Modules for Easy Switching of C-Terminal Epitope Tags in
    Hayashi H; Kishi T
    Microorganisms; 2021 Dec; 9(12):. PubMed ID: 34946108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoactivatable GFP tagging cassettes for protein-tracking studies in the budding yeast Saccharomyces cerevisiae.
    Vorvis C; Markus SM; Lee WL
    Yeast; 2008 Sep; 25(9):651-9. PubMed ID: 18727145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chimeric proteins tagged with specific 3xHA cassettes may present instability and functional problems.
    Saiz-Baggetto S; Méndez E; Quilis I; Igual JC; Bañó MC
    PLoS One; 2017; 12(8):e0183067. PubMed ID: 28800621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ALIBY: ALFA Nanobody-Based Toolkit for Imaging and Biochemistry in Yeast.
    Akhuli D; Dhar A; Viji AS; Bhojappa B; Palani S
    mSphere; 2022 Oct; 7(5):e0033322. PubMed ID: 36190134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strep-tag II and Twin-Strep based cassettes for protein tagging by homologous recombination and characterization of endogenous macromolecular assemblies in Saccharomyces cerevisiae.
    Rai J; Pemmasani JK; Voronovsky A; Jensen IS; Manavalan A; Nyengaard JR; Golas MM; Sander B
    Mol Biotechnol; 2014 Nov; 56(11):992-1003. PubMed ID: 24969434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scarless Genomic Protein Labeling in Saccharomyces cerevisiae.
    Wang Q; Fu YV; Xiao W
    Methods Mol Biol; 2021; 2196():63-75. PubMed ID: 32889713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Avoiding the ends: internal epitope tagging of proteins using transposon Tn7.
    Zordan RE; Beliveau BJ; Trow JA; Craig NL; Cormack BP
    Genetics; 2015 May; 200(1):47-58. PubMed ID: 25745023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.