These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 32401499)

  • 21. Aromatic cross-strand ladders control the structure and stability of beta-rich peptide self-assembly mimics.
    Biancalana M; Makabe K; Koide A; Koide S
    J Mol Biol; 2008 Oct; 383(1):205-13. PubMed ID: 18762191
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural Consequences of Introducing Bioactive Domains to Designer β-Sheet Peptide Self-Assemblies.
    Robang AS; Roy A; Dodd-O JB; He D; Le JV; McShan AC; Hu Y; Kumar VA; Paravastu AK
    Biomacromolecules; 2024 Mar; 25(3):1429-1438. PubMed ID: 38408372
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Magnetic Field-Induced Alignment of Nanofibrous Supramolecular Membranes: A Molecular Design Approach to Create Tissue-like Biomaterials.
    Radvar E; Shi Y; Grasso S; Edwards-Gayle CJC; Liu X; Mauter MS; Castelletto V; Hamley IW; Reece MJ; S Azevedo H
    ACS Appl Mater Interfaces; 2020 May; 12(20):22661-22672. PubMed ID: 32283011
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Charge and sequence effects on the self-assembly and subsequent hydrogelation of Fmoc-depsipeptides.
    Nguyen MM; Eckes KM; Suggs LJ
    Soft Matter; 2014 Apr; 10(15):2693-702. PubMed ID: 24647784
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural Analyses of Designed α-Helix and β-Sheet Peptide Nanofibers Using Solid-State Nuclear Magnetic Resonance and Cryo-Electron Microscopy and Introduction of Structure-Based Metal-Responsive Properties.
    Nakagawa S; Kurokawa M; Kambara O; Takei T; Daidoji K; Naito A; Takita M; Kawamoto A; Hirose M; Tamura A
    Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38256184
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrogel-Stiffening and Non-Cell Adhesive Properties of Amphiphilic Peptides with Central Alkylene Chains.
    Yaguchi A; Hiramatsu H; Ishida A; Oshikawa M; Ajioka I; Muraoka T
    Chemistry; 2021 Jun; 27(36):9295-9301. PubMed ID: 33871881
    [TBL] [Abstract][Full Text] [Related]  

  • 27. T-shaped Peptide Amphiphiles Self Assemble into Nanofiber Networks.
    Fisusi FA; Notman R; Granger LA; Malkinson JP; Schatzlein AG; Uchegbu IF
    Pharm Nanotechnol; 2017; 5(3):215-219. PubMed ID: 28847269
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural and optical properties of short peptides: nanotubes-to-nanofibers phase transformation.
    Handelman A; Natan A; Rosenman G
    J Pept Sci; 2014 Jul; 20(7):487-93. PubMed ID: 24895323
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-assembly of amphiphilic β-sheet peptide tapes based on aliphatic side chains.
    Davies RP; Aggeli A
    J Pept Sci; 2011 Feb; 17(2):107-14. PubMed ID: 21234982
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stimuli-Responsive, Pentapeptide, Nanofiber Hydrogel for Tissue Engineering.
    Tang JD; Mura C; Lampe KJ
    J Am Chem Soc; 2019 Mar; 141(12):4886-4899. PubMed ID: 30830776
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Charge-Induced Secondary Structure Transformation of Amyloid-Derived Dipeptide Assemblies from β-Sheet to α-Helix.
    Xing R; Yuan C; Li S; Song J; Li J; Yan X
    Angew Chem Int Ed Engl; 2018 Feb; 57(6):1537-1542. PubMed ID: 29266653
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-assembly of short peptide amphiphiles: the cooperative effect of hydrophobic interaction and hydrogen bonding.
    Han S; Cao S; Wang Y; Wang J; Xia D; Xu H; Zhao X; Lu JR
    Chemistry; 2011 Nov; 17(46):13095-102. PubMed ID: 21956759
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Shape-specific nanofibers via self-assembly of three-branched peptide.
    Koga T; Matsui H; Matsumoto T; Higashi N
    J Colloid Interface Sci; 2011 Jun; 358(1):81-5. PubMed ID: 21429499
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Atomistic insights into the structure of heptapeptide nanofibers.
    Peccati F; Sodupe M
    J Chem Phys; 2021 Aug; 155(5):055101. PubMed ID: 34364337
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering the Ionic Self-Assembly of Polyoxometalates and Facial-Like Peptides.
    Li J; Li X; Xu J; Wang Y; Wu L; Wang Y; Wang L; Lee M; Li W
    Chemistry; 2016 Oct; 22(44):15751-15759. PubMed ID: 27621229
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Supramolecular Tuning of H
    Qian Y; Kaur K; Foster JC; Matson JB
    Biomacromolecules; 2019 Feb; 20(2):1077-1086. PubMed ID: 30676716
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Post-assembly α-helix to β-sheet structural transformation within SAF-p1/p2a peptide nanofibers.
    Roberts EK; Wong KM; Lee EJ; Le MM; Patel DM; Paravastu AK
    Soft Matter; 2018 Nov; 14(44):8986-8996. PubMed ID: 30375627
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Side-Chain Chemistry Governs Hierarchical Order of Charge-Complementary β-sheet Peptide Coassemblies.
    Liu R; Dong X; Seroski DT; Soto Morales B; Wong KM; Robang AS; Melgar L; Angelini TE; Paravastu AK; Hall CK; Hudalla GA
    Angew Chem Int Ed Engl; 2023 Dec; 62(51):e202314531. PubMed ID: 37931093
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Probing the importance of lateral hydrophobic association in self-assembling peptide hydrogelators.
    Rajagopal K; Ozbas B; Pochan DJ; Schneider JP
    Eur Biophys J; 2006 Jan; 35(2):162-9. PubMed ID: 16283291
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enzyme-assisted peptide folding, assembly and anti-cancer properties.
    Liang C; Zheng D; Shi F; Xu T; Yang C; Liu J; Wang L; Yang Z
    Nanoscale; 2017 Aug; 9(33):11987-11993. PubMed ID: 28792044
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.