BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32401507)

  • 1. Estimating the Effect of Single-Point Mutations on Protein Thermodynamic Stability and Analyzing the Mutation Landscape of the p53 Protein.
    Banerjee A; Mitra P
    J Chem Inf Model; 2020 Jun; 60(6):3315-3323. PubMed ID: 32401507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. iSEE: Interface structure, evolution, and energy-based machine learning predictor of binding affinity changes upon mutations.
    Geng C; Vangone A; Folkers GE; Xue LC; Bonvin AMJJ
    Proteins; 2019 Feb; 87(2):110-119. PubMed ID: 30417935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large scale analysis of protein stability in OMIM disease related human protein variants.
    Martelli PL; Fariselli P; Savojardo C; Babbi G; Aggazio F; Casadio R
    BMC Genomics; 2016 Jun; 17 Suppl 2(Suppl 2):397. PubMed ID: 27356511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing Supervised Learning and Rigorous Approach for Predicting Protein Stability upon Point Mutations in Difficult Targets.
    Kurniawan J; Ishida T
    J Chem Inf Model; 2023 Nov; 63(21):6778-6788. PubMed ID: 37897811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SAAFEC-SEQ: A Sequence-Based Method for Predicting the Effect of Single Point Mutations on Protein Thermodynamic Stability.
    Li G; Panday SK; Alexov E
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33435356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. INPS: predicting the impact of non-synonymous variations on protein stability from sequence.
    Fariselli P; Martelli PL; Savojardo C; Casadio R
    Bioinformatics; 2015 Sep; 31(17):2816-21. PubMed ID: 25957347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PMSPcnn: Predicting protein stability changes upon single point mutations with convolutional neural network.
    Sun X; Yang S; Wu Z; Su J; Hu F; Chang F; Li C
    Structure; 2024 Jun; 32(6):838-848.e3. PubMed ID: 38508191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the
    Chitrala KN; Nagarkatti M; Nagarkatti P; Yeguvapalli S
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31216622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure.
    Capriotti E; Fariselli P; Casadio R
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W306-10. PubMed ID: 15980478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A three-state prediction of single point mutations on protein stability changes.
    Capriotti E; Fariselli P; Rossi I; Casadio R
    BMC Bioinformatics; 2008 Mar; 9 Suppl 2(Suppl 2):S6. PubMed ID: 18387208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. STRUM: structure-based prediction of protein stability changes upon single-point mutation.
    Quan L; Lv Q; Zhang Y
    Bioinformatics; 2016 Oct; 32(19):2936-46. PubMed ID: 27318206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PSP-GNM: Predicting Protein Stability Changes upon Point Mutations with a Gaussian Network Model.
    Mishra SK
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting changes in protein thermodynamic stability upon point mutation with deep 3D convolutional neural networks.
    Li B; Yang YT; Capra JA; Gerstein MB
    PLoS Comput Biol; 2020 Nov; 16(11):e1008291. PubMed ID: 33253214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Follow the Mutations: Toward Class-Specific, Small-Molecule Reactivation of p53.
    Loh SN
    Biomolecules; 2020 Feb; 10(2):. PubMed ID: 32075132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the Effect of Amino Acid Single-Point Mutations on Protein Stability-Large-Scale Validation of MD-Based Relative Free Energy Calculations.
    Steinbrecher T; Zhu C; Wang L; Abel R; Negron C; Pearlman D; Feyfant E; Duan J; Sherman W
    J Mol Biol; 2017 Apr; 429(7):948-963. PubMed ID: 27964946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DynaMut2: Assessing changes in stability and flexibility upon single and multiple point missense mutations.
    Rodrigues CHM; Pires DEV; Ascher DB
    Protein Sci; 2021 Jan; 30(1):60-69. PubMed ID: 32881105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a new cancer-associated mutant of p53 with a missense mutation (K351N) in the tetramerization domain.
    Muscolini M; Montagni E; Caristi S; Nomura T; Kamada R; Di Agostino S; Corazzari M; Piacentini M; Blandino G; Costanzo A; Sakaguchi K; Tuosto L
    Cell Cycle; 2009 Oct; 8(20):3396-405. PubMed ID: 19806023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Folding of tetrameric p53: oligomerization and tumorigenic mutations induce misfolding and loss of function.
    Lubin DJ; Butler JS; Loh SN
    J Mol Biol; 2010 Jan; 395(4):705-16. PubMed ID: 19913028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation of levels of folded recombinant p53 in escherichia coli with thermodynamic stability in vitro.
    Mayer S; RĂ¼diger S; Ang HC; Joerger AC; Fersht AR
    J Mol Biol; 2007 Sep; 372(1):268-76. PubMed ID: 17631895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic stability of wild-type and mutant p53 core domain.
    Bullock AN; Henckel J; DeDecker BS; Johnson CM; Nikolova PV; Proctor MR; Lane DP; Fersht AR
    Proc Natl Acad Sci U S A; 1997 Dec; 94(26):14338-42. PubMed ID: 9405613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.