These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 32401523)
1. Control of Vibronic Transition Rates by Resonant Single-Molecule-Nanoantenna Coupling. Saemisch L; Liebel M; van Hulst NF Nano Lett; 2020 Jun; 20(6):4537-4542. PubMed ID: 32401523 [TBL] [Abstract][Full Text] [Related]
2. Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas. Muskens OL; Giannini V; Sanchez-Gil JA; Gómez Rivas J Nano Lett; 2007 Sep; 7(9):2871-5. PubMed ID: 17683156 [TBL] [Abstract][Full Text] [Related]
3. Enhancement of and interference among higher order multipole transitions in molecules near a plasmonic nanoantenna. Rusak E; Straubel J; Gładysz P; Göddel M; Kędziorski A; Kühn M; Weigend F; Rockstuhl C; Słowik K Nat Commun; 2019 Dec; 10(1):5775. PubMed ID: 31852897 [TBL] [Abstract][Full Text] [Related]
4. Molecular hot electroluminescence due to strongly enhanced spontaneous emission rates in a plasmonic nanocavity. Chen G; Li XG; Zhang ZY; Dong ZC Nanoscale; 2015 Feb; 7(6):2442-9. PubMed ID: 25565003 [TBL] [Abstract][Full Text] [Related]
5. Excitonic splitting and vibronic coupling in 1,2-diphenoxyethane: conformation-specific effects in the weak coupling limit. Buchanan EG; Walsh PS; Plusquellic DF; Zwier TS J Chem Phys; 2013 May; 138(20):204313. PubMed ID: 23742481 [TBL] [Abstract][Full Text] [Related]
7. Nanoantenna enhanced emission of light-harvesting complex 2: the role of resonance, polarization, and radiative and non-radiative rates. Wientjes E; Renger J; Curto AG; Cogdell R; van Hulst NF Phys Chem Chem Phys; 2014 Dec; 16(45):24739-46. PubMed ID: 25315613 [TBL] [Abstract][Full Text] [Related]
8. Enhancing the radiative emission rate of single molecules by a plasmonic nanoantenna weakly coupled with a dielectric substrate. Chen XW; Lee KG; Eghlidi H; Götzinger S; Sandoghdar V Opt Express; 2015 Dec; 23(26):32986-92. PubMed ID: 26831966 [TBL] [Abstract][Full Text] [Related]
9. Nanoscale Imaging and Control of Hexagonal Boron Nitride Single Photon Emitters by a Resonant Nanoantenna. Palombo Blascetta N; Liebel M; Lu X; Taniguchi T; Watanabe K; Efetov DK; van Hulst NF Nano Lett; 2020 Mar; 20(3):1992-1999. PubMed ID: 32053384 [TBL] [Abstract][Full Text] [Related]
10. Cold and Hot Spots: From Inhibition to Enhancement by Nanoscale Phase Tuning of Optical Nanoantennas. Palombo Blascetta N; Lombardi P; Toninelli C; van Hulst NF Nano Lett; 2020 Sep; 20(9):6756-6762. PubMed ID: 32804516 [TBL] [Abstract][Full Text] [Related]
11. Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection. Neubrech F; Pucci A; Cornelius TW; Karim S; García-Etxarri A; Aizpurua J Phys Rev Lett; 2008 Oct; 101(15):157403. PubMed ID: 18999639 [TBL] [Abstract][Full Text] [Related]
12. Nanoantenna-Microcavity Hybrids with Highly Cooperative Plasmonic-Photonic Coupling. Liu JN; Huang Q; Liu KK; Singamaneni S; Cunningham BT Nano Lett; 2017 Dec; 17(12):7569-7577. PubMed ID: 29078049 [TBL] [Abstract][Full Text] [Related]
13. Spectral Reshaping of Single Dye Molecules Coupled to Single Plasmonic Nanoparticles. Lee SA; Biteen JS J Phys Chem Lett; 2019 Oct; 10(19):5764-5769. PubMed ID: 31508965 [TBL] [Abstract][Full Text] [Related]
14. Coupling, lifetimes, and "strong coupling" maps for single molecules at plasmonic interfaces. Mondal M; Ochoa MA; Sukharev M; Nitzan A J Chem Phys; 2022 Apr; 156(15):154303. PubMed ID: 35459293 [TBL] [Abstract][Full Text] [Related]
15. Nanoimaging and Control of Molecular Vibrations through Electromagnetically Induced Scattering Reaching the Strong Coupling Regime. Muller EA; Pollard B; Bechtel HA; Adato R; Etezadi D; Altug H; Raschke MB ACS Photonics; 2018 Sep; 5(9):3594-3600. PubMed ID: 30828589 [TBL] [Abstract][Full Text] [Related]