BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 32401802)

  • 1. Crystal structure of Thermus thermophilus methylenetetrahydrofolate dehydrogenase and determinants of thermostability.
    Maiello F; Gallo G; Coelho C; Sucharski F; Hardy L; Würtele M
    PLoS One; 2020; 15(5):e0232959. PubMed ID: 32401802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic cross correlation analysis of Thermus thermophilus alkaline phosphatase and determinants of thermostability.
    Borges B; Gallo G; Coelho C; Negri N; Maiello F; Hardy L; Würtele M
    Biochim Biophys Acta Gen Subj; 2021 Jul; 1865(7):129895. PubMed ID: 33781823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the role of charged residues in thermophilic proteins by rotamer and dynamic cross correlation analysis.
    Sucharski F; Gallo G; Coelho C; Hardy L; Würtele M
    J Mol Model; 2023 Apr; 29(5):132. PubMed ID: 37036538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties and crystal structure of methylenetetrahydrofolate reductase from Thermus thermophilus HB8.
    Igari S; Ohtaki A; Yamanaka Y; Sato Y; Yohda M; Odaka M; Noguchi K; Yamada K
    PLoS One; 2011; 6(8):e23716. PubMed ID: 21858212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design, X-ray crystallography, molecular modelling and thermal stability studies of mutant enzymes at site 172 of 3-isopropylmalate dehydrogenase from Thermus thermophilus.
    Qu C; Akanuma S; Tanaka N; Moriyama H; Oshima T
    Acta Crystallogr D Biol Crystallogr; 2001 Feb; 57(Pt 2):225-32. PubMed ID: 11173468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preliminary characterization and crystal structure of a thermostable cytochrome P450 from Thermus thermophilus.
    Yano JK; Blasco F; Li H; Schmid RD; Henne A; Poulos TL
    J Biol Chem; 2003 Jan; 278(1):608-16. PubMed ID: 12401810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The crystal structures of mutated 3-isopropylmalate dehydrogenase from Thermus thermophilus HB8 and their relationship to the thermostability of the enzyme.
    Moriyama H; Onodera K; Sakurai M; Tanaka N; Kirino-Kagawa H; Oshima T; Katsube Y
    J Biochem; 1995 Feb; 117(2):408-13. PubMed ID: 7608131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structures of Escherichia coli and Salmonella typhimurium 3-isopropylmalate dehydrogenase and comparison with their thermophilic counterpart from Thermus thermophilus.
    Wallon G; Kryger G; Lovett ST; Oshima T; Ringe D; Petsko GA
    J Mol Biol; 1997 Mar; 266(5):1016-31. PubMed ID: 9086278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of indole-3-glycerol phosphate synthase from Thermus thermophilus HB8: implications for thermal stability.
    Bagautdinov B; Yutani K
    Acta Crystallogr D Biol Crystallogr; 2011 Dec; 67(Pt 12):1054-64. PubMed ID: 22120743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermostable repair enzyme for oxidative DNA damage from extremely thermophilic bacterium, Thermus thermophilus HB8.
    Mikawa T; Kato R; Sugahara M; Kuramitsu S
    Nucleic Acids Res; 1998 Feb; 26(4):903-10. PubMed ID: 9461446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HU histone-like DNA-binding protein from Thermus thermophilus: structural and evolutionary analyses.
    Papageorgiou AC; Adam PS; Stavros P; Nounesis G; Meijers R; Petratos K; Vorgias CE
    Extremophiles; 2016 Sep; 20(5):695-709. PubMed ID: 27342116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An aspartate aminotransferase from an extremely thermophilic bacterium, Thermus thermophilus HB8.
    Okamoto A; Kato R; Masui R; Yamagishi A; Oshima T; Kuramitsu S
    J Biochem; 1996 Jan; 119(1):135-44. PubMed ID: 8907187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of ribonuclease H from Thermus thermophilus HB8 refined at 2.8 A resolution.
    Ishikawa K; Okumura M; Katayanagi K; Kimura S; Kanaya S; Nakamura H; Morikawa K
    J Mol Biol; 1993 Mar; 230(2):529-42. PubMed ID: 8385228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermostabilization of a chimeric enzyme by residue substitutions: four amino acid residues in loop regions are responsible for the thermostability of Thermus thermophilus isopropylmalate dehydrogenase.
    Numata K; Hayashi-Iwasaki Y; Kawaguchi J; Sakurai M; Moriyama H; Tanaka N; Oshima T
    Biochim Biophys Acta; 2001 Feb; 1545(1-2):174-83. PubMed ID: 11342043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of novel NADP-dependent 3-hydroxyisobutyrate dehydrogenase from Thermus thermophilus HB8.
    Lokanath NK; Ohshima N; Takio K; Shiromizu I; Kuroishi C; Okazaki N; Kuramitsu S; Yokoyama S; Miyano M; Kunishima N
    J Mol Biol; 2005 Sep; 352(4):905-17. PubMed ID: 16126223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational preferences underlying reduced activity of a thermophilic ribonuclease H.
    Stafford KA; Trbovic N; Butterwick JA; Abel R; Friesner RA; Palmer AG
    J Mol Biol; 2015 Feb; 427(4):853-866. PubMed ID: 25550198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning, expression, purification, crystallization and preliminary X-ray crystallographic study of molybdopterin synthase from Thermus thermophilus HB8.
    Kanaujia SP; Ranjani CV; Jeyakanthan J; Ohmori M; Agari K; Kitamura Y; Baba S; Ebihara A; Shinkai A; Kuramitsu S; Shiro Y; Sekar K; Yokoyama S
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2007 Apr; 63(Pt 4):324-6. PubMed ID: 17401207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of a predicted phosphoribosyltransferase (TT1426) from Thermus thermophilus HB8 at 2.01 A resolution.
    Kukimoto-Niino M; Shibata R; Murayama K; Hamana H; Nishimoto M; Bessho Y; Terada T; Shirouzu M; Kuramitsu S; Yokoyama S
    Protein Sci; 2005 Mar; 14(3):823-7. PubMed ID: 15689504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determinants of dual substrate specificity revealed by the crystal structure of homoisocitrate dehydrogenase from Thermus thermophilus in complex with homoisocitrate·Mg(2+)·NADH.
    Takahashi K; Tomita T; Kuzuyama T; Nishiyama M
    Biochem Biophys Res Commun; 2016 Sep; 478(4):1688-93. PubMed ID: 27601325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Silico Investigation of Potential Applications of Gamma Carbonic Anhydrases as Catalysts of CO
    Manyumwa CV; Bishop ÖT
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33799806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.