These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 32402876)

  • 1. Mitochondrial-related effects of pentabromophenol, tetrabromobisphenol A, and triphenyl phosphate on murine BV-2 microglia cells.
    Bowen C; Childers G; Perry C; Martin N; McPherson CA; Lauten T; Santos J; Harry GJ
    Chemosphere; 2020 Sep; 255():126919. PubMed ID: 32402876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicity of new generation flame retardants to Daphnia magna.
    Waaijers SL; Hartmann J; Soeter AM; Helmus R; Kools SA; de Voogt P; Admiraal W; Parsons JR; Kraak MH
    Sci Total Environ; 2013 Oct; 463-464():1042-8. PubMed ID: 23886749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tetrabromobisphenol A, terabromobisphenol S and other bromophenolic flame retardants cause cytotoxic effects and induce oxidative stress in human peripheral blood mononuclear cells (in vitro study).
    Włuka A; Woźniak A; Woźniak E; Michałowicz J
    Chemosphere; 2020 Dec; 261():127705. PubMed ID: 32731020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preliminary ecotoxicity hazard evaluation of DOPO-HQ as a potential alternative to halogenated flame retardants.
    Liu M; Yin H; Chen X; Yang J; Liang Y; Zhang J; Yang F; Deng Y; Lu S
    Chemosphere; 2018 Feb; 193():126-133. PubMed ID: 29128559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro assessment of eryptotic potential of tetrabromobisphenol A and other bromophenolic flame retardants.
    Jarosiewicz M; Michałowicz J; Bukowska B
    Chemosphere; 2019 Jan; 215():404-412. PubMed ID: 30336317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing the effects of tetrabromobisphenol-A, bisphenol A, and their potential replacement alternatives, TBBPA-bis(2,3-dibromopropyl ether) and bisphenol S, on cell viability and messenger ribonucleic acid expression in chicken embryonic hepatocytes.
    Ma M; Crump D; Farmahin R; Kennedy SW
    Environ Toxicol Chem; 2015 Feb; 34(2):391-401. PubMed ID: 25470364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the Effect of Selected Brominated Flame Retardants on Human Serum Albumin and Human Erythrocyte Membrane Proteins.
    Jarosiewicz M; Miłowska K; Krokosz A; Bukowska B
    Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32486253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxicity profiling of flame retardants in zebrafish embryos using a battery of assays for developmental toxicity, neurotoxicity, cardiotoxicity and hepatotoxicity toward human relevance.
    Alzualde A; Behl M; Sipes NS; Hsieh JH; Alday A; Tice RR; Paules RS; Muriana A; Quevedo C
    Neurotoxicol Teratol; 2018; 70():40-50. PubMed ID: 30312655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of neonatal exposure to the flame retardant tetrabromobisphenol-A, aluminum diethylphosphinate or zinc stannate on long-term potentiation and synaptic protein levels in mice.
    Hendriks HS; Koolen LA; Dingemans MM; Viberg H; Lee I; Leonards PE; Ramakers GM; Westerink RH
    Arch Toxicol; 2015 Dec; 89(12):2345-54. PubMed ID: 25253649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Indoor organophosphate and polybrominated flame retardants in Tokyo.
    Saito I; Onuki A; Seto H
    Indoor Air; 2007 Feb; 17(1):28-36. PubMed ID: 17257150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanisms and tissue targets of brominated flame retardants, BDE-47 and TBBPA, in embryo-larval life stages of zebrafish (Danio rerio).
    Parsons A; Lange A; Hutchinson TH; Miyagawa S; Iguchi T; Kudoh T; Tyler CR
    Aquat Toxicol; 2019 Apr; 209():99-112. PubMed ID: 30763833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in the activities of antioxidant enzymes and reduced glutathione level in human erythrocytes exposed to selected brominated flame retardants.
    Jarosiewicz M; Krokosz A; Marczak A; Bukowska B
    Chemosphere; 2019 Jul; 227():93-99. PubMed ID: 30986606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmentally relevant doses of tetrabromobisphenol A (TBBPA) cause immunotoxicity in murine macrophages.
    Wang X; Wei L; Zhu J; He B; Kong B; Xue Z; Jin X; Fu Z
    Chemosphere; 2019 Dec; 236():124413. PubMed ID: 31545206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tetrabromobisphenol A induces cellular damages in pancreatic β-cells in vitro.
    Suh KS; Choi EM; Rhee SY; Oh S; Kim SW; Pak YK; Choe W; Ha J; Chon S
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Jun; 52(7):624-631. PubMed ID: 28301301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flame retardant emission from e-waste recycling operation in northern Vietnam: environmental occurrence of emerging organophosphorus esters used as alternatives for PBDEs.
    Matsukami H; Tue NM; Suzuki G; Someya M; Tuyen le H; Viet PH; Takahashi S; Tanabe S; Takigami H
    Sci Total Environ; 2015 May; 514():492-9. PubMed ID: 25701386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of plastic disks containing flame retardants for elucidating changes in their concentrations due to simulated weathering and the application of these disks to weathering tests.
    Hanari N; Otake T; Itoh N; Wada A; Ohata M
    Environ Monit Assess; 2017 Feb; 189(2):92. PubMed ID: 28144875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tetrabromobisphenol A-Induced Apoptosis in Neural Stem Cells Through Oxidative Stress and Mitochondrial Dysfunction.
    Cho JH; Lee S; Jeon H; Kim AH; Lee W; Lee Y; Yang S; Yun J; Jung YS; Lee J
    Neurotox Res; 2020 Jun; 38(1):74-85. PubMed ID: 32108298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tetrabromobisphenol A induces THR β-mediated inflammation and uterine injury in mice at environmentally relevant exposure concentrations.
    Zhang W; Li A; Pan Y; Wang F; Li M; Liang Y; Yao X; Song J; Song M; Jiang G
    J Hazard Mater; 2021 Apr; 407():124859. PubMed ID: 33360189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organophosphate Flame Retardants Act as Endocrine-Disrupting Chemicals in MA-10 Mouse Tumor Leydig Cells.
    Schang G; Robaire B; Hales BF
    Toxicol Sci; 2016 Apr; 150(2):499-509. PubMed ID: 26794138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in neonatal neurotoxicity of brominated flame retardants, PBDE 99 and TBBPA, in mice.
    Viberg H; Eriksson P
    Toxicology; 2011 Oct; 289(1):59-65. PubMed ID: 21820030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.