These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 32402955)

  • 1. Multiple stresses occurring with boron toxicity and deficiency in plants.
    García-Sánchez F; Simón-Grao S; Martínez-Nicolás JJ; Alfosea-Simón M; Liu C; Chatzissavvidis C; Pérez-Pérez JG; Cámara-Zapata JM
    J Hazard Mater; 2020 Oct; 397():122713. PubMed ID: 32402955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation.
    Zia R; Nawaz MS; Siddique MJ; Hakim S; Imran A
    Microbiol Res; 2021 Jan; 242():126626. PubMed ID: 33189069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of an evolutionarily conserved drought-responsive sugarcane gene enhances salinity and drought resilience.
    Begcy K; Mariano ED; Lembke CG; Zingaretti SM; Souza GM; Araújo P; Menossi M
    Ann Bot; 2019 Oct; 124(4):691-700. PubMed ID: 31125059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined effect of salt and drought on boron toxicity in Puccinellia tenuiflora.
    Liu C; Dai Z; Xia J; Chang C; Sun H
    Ecotoxicol Environ Saf; 2018 Aug; 157():395-402. PubMed ID: 29653373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arbuscular mycorrhizal fungi alleviate boron toxicity in Puccinellia tenuiflora under the combined stresses of salt and drought.
    Liu C; Dai Z; Cui M; Lu W; Sun H
    Environ Pollut; 2018 Sep; 240():557-565. PubMed ID: 29758530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proximal hyperspectral sensing of abiotic stresses in plants.
    Sanaeifar A; Yang C; de la Guardia M; Zhang W; Li X; He Y
    Sci Total Environ; 2023 Feb; 861():160652. PubMed ID: 36470376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects.
    Etesami H; Maheshwari DK
    Ecotoxicol Environ Saf; 2018 Jul; 156():225-246. PubMed ID: 29554608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Desert-adapted fungal endophytes induce salinity and drought stress resistance in model crops.
    Hosseyni Moghaddam MS; Safaie N; Soltani J; Hagh-Doust N
    Plant Physiol Biochem; 2021 Mar; 160():225-238. PubMed ID: 33517220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arbuscular mycorrhizal fungal responses to abiotic stresses: A review.
    Lenoir I; Fontaine J; Lounès-Hadj Sahraoui A
    Phytochemistry; 2016 Mar; 123():4-15. PubMed ID: 26803396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unique Physiological and Transcriptional Shifts under Combinations of Salinity, Drought, and Heat.
    Shaar-Moshe L; Blumwald E; Peleg Z
    Plant Physiol; 2017 May; 174(1):421-434. PubMed ID: 28314795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resilience of Penicillium resedanum LK6 and exogenous gibberellin in improving Capsicum annuum growth under abiotic stresses.
    Khan AL; Waqas M; Lee IJ
    J Plant Res; 2015 Mar; 128(2):259-68. PubMed ID: 25537300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Do plants respond and recover from a combination of drought and heatwave in the same manner under adequate and deprived soil nutrient conditions?
    Dikšaitytė A; Viršilė A; Žaltauskaitė J; Januškaitienė I; Praspaliauskas M; Pedišius N
    Plant Sci; 2020 Feb; 291():110333. PubMed ID: 31928679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic response of maize plants to multi-factorial abiotic stresses.
    Sun CX; Li MQ; Gao XX; Liu LN; Wu XF; Zhou JH
    Plant Biol (Stuttg); 2016 Jan; 18 Suppl 1():120-9. PubMed ID: 25622534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants.
    Etesami H; Jeong BR
    Ecotoxicol Environ Saf; 2018 Jan; 147():881-896. PubMed ID: 28968941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abiotic and biotic stress combinations.
    Suzuki N; Rivero RM; Shulaev V; Blumwald E; Mittler R
    New Phytol; 2014 Jul; 203(1):32-43. PubMed ID: 24720847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of RNAi technology: a novel approach to navigate abiotic stresses.
    Ullah I; Kamel EAR; Shah ST; Basit A; Mohamed HI; Sajid M
    Mol Biol Rep; 2022 Nov; 49(11):10975-10993. PubMed ID: 36057876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High temperatures modify plant responses to abiotic stress conditions.
    Balfagón D; Zandalinas SI; Mittler R; Gómez-Cadenas A
    Physiol Plant; 2020 Nov; 170(3):335-344. PubMed ID: 32533896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of abiotic stressors on native rhizospheric bacterial community of Cajanus cajan.
    Anand G; Bisaria VS; Sharma S
    J Basic Microbiol; 2020 Jan; 60(1):4-13. PubMed ID: 31682282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Review: mechanisms for boron deficiency-mediated changes in plant water relations.
    Wimmer MA; Eichert T
    Plant Sci; 2013 Apr; 203-204():25-32. PubMed ID: 23415325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.