These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32403095)

  • 1. Crucial role of an aerophobic substrate in bubble-propelled nanomotor aggregation.
    Wang T; Zheng M; Wang L; Ji L; Wang S
    Nanotechnology; 2020 Aug; 31(35):355504. PubMed ID: 32403095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Internally/Externally Bubble-Propelled Photocatalytic Tubular Nanomotors for Efficient Water Cleaning.
    Wang S; Jiang Z; Ouyang S; Dai Z; Wang T
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23974-23982. PubMed ID: 28650608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Femtosecond laser induced underwater superaerophilic and superaerophobic PDMS sheets with through microholes for selective passage of air bubbles and further collection of underwater gas.
    Yong J; Chen F; Huo J; Fang Y; Yang Q; Zhang J; Hou X
    Nanoscale; 2018 Feb; 10(8):3688-3696. PubMed ID: 29340400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultraviolet-Driven Janus Foams with Wetting Gradients: Unidirectional Penetration Control for Underwater Bubbles.
    Dai X; Guo Z; Liu W
    ACS Appl Mater Interfaces; 2022 Sep; 14(37):42734-42743. PubMed ID: 36070967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Integrated Janus Mesh: Underwater Bubble Antibuoyancy Unidirectional Penetration.
    Pei C; Peng Y; Zhang Y; Tian D; Liu K; Jiang L
    ACS Nano; 2018 Jun; 12(6):5489-5494. PubMed ID: 29851457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinspired Nanostructured Surfaces for On-Demand Bubble Transportation.
    Tang X; Xiong H; Kong T; Tian Y; Li WD; Wang L
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):3029-3038. PubMed ID: 29320159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate-independent, switchable bubble wettability surfaces induced by ultrasonic treatment.
    Chu D; Sun X; Hu Y; Duan JA
    Soft Matter; 2019 Sep; 15(37):7398-7403. PubMed ID: 31464333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-Driven Micro/Nanomotor for Promising Biomedical Tools: Principle, Challenge, and Prospect.
    Wang J; Xiong Z; Zheng J; Zhan X; Tang J
    Acc Chem Res; 2018 Sep; 51(9):1957-1965. PubMed ID: 30179455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Air-Stable Aerophobic Polydimethylsiloxane Tube with Efficient Self-Removal of Air Bubbles.
    Park J; Woo S; Kim S; Kim M; Hwang W
    ACS Omega; 2019 Nov; 4(19):18304-18311. PubMed ID: 31720531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wetting transitions on rough surfaces revealed with captive bubble experiments. The role of surface energy.
    Moraila CL; Montes Ruiz-Cabello FJ; Cabrerizo-Vílchez M; Rodríguez-Valverde MÁ
    J Colloid Interface Sci; 2019 Mar; 539():448-456. PubMed ID: 30605814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pitcher plant-bioinspired bubble slippery surface fabricated by femtosecond laser for buoyancy-driven bubble self-transport and efficient gas capture.
    Jiao Y; Lv X; Zhang Y; Li C; Li J; Wu H; Xiao Y; Wu S; Hu Y; Wu D; Chu J
    Nanoscale; 2019 Jan; 11(3):1370-1378. PubMed ID: 30604827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water/gas separation based on the selective bubble-passage effect of underwater superaerophobic and superaerophilic meshes processed by a femtosecond laser.
    Yong J; Zhuang J; Bai X; Huo J; Yang Q; Hou X; Chen F
    Nanoscale; 2021 Jun; 13(23):10414-10424. PubMed ID: 34018504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of Bacteria from Solids by Bubbles: Effect of Solid Wettability, Interaction Geometry, and Liquid-Vapor Interface Velocity.
    Kriegel AT; Ducker WA
    Langmuir; 2019 Oct; 35(39):12817-12830. PubMed ID: 31448615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate-Independent, Fast, and Reversible Switching between Underwater Superaerophobicity and Aerophilicity on the Femtosecond Laser-Induced Superhydrophobic Surfaces for Selectively Repelling or Capturing Bubbles in Water.
    Yong J; Singh SC; Zhan Z; Chen F; Guo C
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):8667-8675. PubMed ID: 30698002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser-Induced Wettability Gradient Surface of the Aluminum Matrix Used for Directional Transportation and Collection of Underwater Bubbles.
    Zheng Z; Yang H; Cao Y; Dai Z
    ACS Omega; 2020 Jan; 5(1):718-725. PubMed ID: 31956822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast Capture, Collection, and Targeted Transfer of Underwater Gas Bubbles Using Janus-Faced Carbon Cloth Prepared by a Novel and Simple Strategy.
    Tahzibi H; Azizian S; Szunerits S; Boukherroub R
    ACS Appl Mater Interfaces; 2022 Oct; 14(39):45013-45024. PubMed ID: 36149819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The alveolar surface network: a new anatomy and its physiological significance.
    Scarpelli EM
    Anat Rec; 1998 Aug; 251(4):491-527. PubMed ID: 9713987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioinspired Two-Dimensional Structure with Asymmetric Wettability Barriers for Unidirectional and Long-Distance Gas Bubble Delivery Underwater.
    Xiao X; Li S; Zhu X; Xiao X; Zhang C; Jiang F; Yu C; Jiang L
    Nano Lett; 2021 Mar; 21(5):2117-2123. PubMed ID: 33599507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Turn-Number-Dependent Motion Behavior of Catalytic Helical Carbon Micro/Nanomotors.
    Xu D; Zhan C; Sun Y; Dong Z; Wang GP; Ma X
    Chem Asian J; 2019 Jul; 14(14):2497-2502. PubMed ID: 30985962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controllable manipulation of bubbles in water by using underwater superaerophobic graphene-oxide/gold-nanoparticle composite surfaces.
    Xu R; Xu X; He M; Su B
    Nanoscale; 2017 Dec; 10(1):231-238. PubMed ID: 29210427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.