These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 32403344)
1. A Role for Auxin in Ethylene-Dependent Inducible Aerenchyma Formation in Rice Roots. Yamauchi T; Tanaka A; Tsutsumi N; Inukai Y; Nakazono M Plants (Basel); 2020 May; 9(5):. PubMed ID: 32403344 [TBL] [Abstract][Full Text] [Related]
2. Fine control of aerenchyma and lateral root development through AUX/IAA- and ARF-dependent auxin signaling. Yamauchi T; Tanaka A; Inahashi H; Nishizawa NK; Tsutsumi N; Inukai Y; Nakazono M Proc Natl Acad Sci U S A; 2019 Oct; 116(41):20770-20775. PubMed ID: 31548376 [TBL] [Abstract][Full Text] [Related]
3. Ethylene-dependent aerenchyma formation in adventitious roots is regulated differently in rice and maize. Yamauchi T; Tanaka A; Mori H; Takamure I; Kato K; Nakazono M Plant Cell Environ; 2016 Oct; 39(10):2145-57. PubMed ID: 27169562 [TBL] [Abstract][Full Text] [Related]
4. Modeling-based age-dependent analysis reveals the net patterns of ethylene-dependent and -independent aerenchyma formation in rice and maize roots. Yamauchi T; Nakazono M Plant Sci; 2022 Aug; 321():111340. PubMed ID: 35696932 [TBL] [Abstract][Full Text] [Related]
5. Ethylene Biosynthesis Is Promoted by Very-Long-Chain Fatty Acids during Lysigenous Aerenchyma Formation in Rice Roots. Yamauchi T; Shiono K; Nagano M; Fukazawa A; Ando M; Takamure I; Mori H; Nishizawa NK; Kawai-Yamada M; Tsutsumi N; Kato K; Nakazono M Plant Physiol; 2015 Sep; 169(1):180-93. PubMed ID: 26036614 [TBL] [Abstract][Full Text] [Related]
6. Mutualistic fungus Phomopsis liquidambari increases root aerenchyma formation through auxin-mediated ethylene accumulation in rice (Oryza sativa L.). Hu LY; Li D; Sun K; Cao W; Fu WQ; Zhang W; Dai CC Plant Physiol Biochem; 2018 Sep; 130():367-376. PubMed ID: 30055345 [TBL] [Abstract][Full Text] [Related]
7. METALLOTHIONEIN genes encoding ROS scavenging enzymes are down-regulated in the root cortex during inducible aerenchyma formation in rice. Yamauchi T; Fukazawa A; Nakazono M Plant Signal Behav; 2017 Nov; 12(11):e1388976. PubMed ID: 29035627 [TBL] [Abstract][Full Text] [Related]
8. An NADPH Oxidase RBOH Functions in Rice Roots during Lysigenous Aerenchyma Formation under Oxygen-Deficient Conditions. Yamauchi T; Yoshioka M; Fukazawa A; Mori H; Nishizawa NK; Tsutsumi N; Yoshioka H; Nakazono M Plant Cell; 2017 Apr; 29(4):775-790. PubMed ID: 28351990 [TBL] [Abstract][Full Text] [Related]
9. Transcript profiles in cortical cells of maize primary root during ethylene-induced lysigenous aerenchyma formation under aerobic conditions. Takahashi H; Yamauchi T; Rajhi I; Nishizawa NK; Nakazono M Ann Bot; 2015 May; 115(6):879-94. PubMed ID: 25858325 [TBL] [Abstract][Full Text] [Related]
10. Lysigenous aerenchyma formation involves non-apoptotic programmed cell death in rice (Oryza sativa L.) roots. Joshi R; Kumar P Physiol Mol Biol Plants; 2012 Jan; 18(1):1-9. PubMed ID: 23573035 [TBL] [Abstract][Full Text] [Related]
11. Root Cortex Provides a Venue for Gas-Space Formation and Is Essential for Plant Adaptation to Waterlogging. Yamauchi T; Abe F; Tsutsumi N; Nakazono M Front Plant Sci; 2019; 10():259. PubMed ID: 31024577 [TBL] [Abstract][Full Text] [Related]
13. Asymmetric auxin distribution establishes a contrasting pattern of aerenchyma formation in the nodal roots of Ning J; Yamauchi T; Takahashi H; Omori F; Mano Y; Nakazono M Front Plant Sci; 2023; 14():1133009. PubMed ID: 37152158 [TBL] [Abstract][Full Text] [Related]
14. Role of ethylene signalling in the formation of constitutive aerenchyma in primary roots of rice. Yukiyoshi K; Karahara I AoB Plants; 2014 Jul; 6():. PubMed ID: 25063833 [TBL] [Abstract][Full Text] [Related]
15. Nitrate increases ethylene production and aerenchyma formation in roots of lowland rice plants under water stress. Gao C; Ding L; Li Y; Chen Y; Zhu J; Gu M; Li Y; Xu G; Shen Q; Guo S Funct Plant Biol; 2017 Apr; 44(4):430-442. PubMed ID: 32480576 [TBL] [Abstract][Full Text] [Related]
16. Roles of auxin and ethylene in aerenchyma formation in sugarcane roots. Tavares EQP; Grandis A; Lembke CG; Souza GM; Purgatto E; De Souza AP; Buckeridge MS Plant Signal Behav; 2018 Mar; 13(3):e1422464. PubMed ID: 29286887 [TBL] [Abstract][Full Text] [Related]
17. The activation of OsEIL1 on YUC8 transcription and auxin biosynthesis is required for ethylene-inhibited root elongation in rice early seedling development. Qin H; Zhang Z; Wang J; Chen X; Wei P; Huang R PLoS Genet; 2017 Aug; 13(8):e1006955. PubMed ID: 28829777 [TBL] [Abstract][Full Text] [Related]
18. Selenium downregulates auxin and ethylene biosynthesis in rice seedlings to modify primary metabolism and root architecture. Malheiros RSP; Costa LC; Ávila RT; Pimenta TM; Teixeira LS; Brito FAL; Zsögön A; Araújo WL; Ribeiro DM Planta; 2019 Jul; 250(1):333-345. PubMed ID: 31030327 [TBL] [Abstract][Full Text] [Related]
19. Distinct mechanisms for aerenchyma formation in leaf sheaths of rice genotypes displaying a quiescence or escape strategy for flooding tolerance. Parlanti S; Kudahettige NP; Lombardi L; Mensuali-Sodi A; Alpi A; Perata P; Pucciariello C Ann Bot; 2011 Jun; 107(8):1335-43. PubMed ID: 21489969 [TBL] [Abstract][Full Text] [Related]
20. Nitro-oxidative stress induces the formation of roots' cortical aerenchyma in rice under osmotic stress. Basu S; Kumari S; Kumar A; Shahid R; Kumar S; Kumar G Physiol Plant; 2021 Jun; 172(2):963-975. PubMed ID: 33826753 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]