These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 32403383)

  • 41. Chloroplast Transition Metal Regulation for Efficient Photosynthesis.
    Schmidt SB; Eisenhut M; Schneider A
    Trends Plant Sci; 2020 Aug; 25(8):817-828. PubMed ID: 32673582
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cytochrome c reducing substances in photosynthetic electron transport.
    Oettmeier W; Lockau W
    Z Naturforsch C; 1973; 28(11):717-21. PubMed ID: 4361022
    [No Abstract]   [Full Text] [Related]  

  • 43. Evolution of photorespiration from cyanobacteria to land plants, considering protein phylogenies and acquisition of carbon concentrating mechanisms.
    Hagemann M; Kern R; Maurino VG; Hanson DT; Weber AP; Sage RF; Bauwe H
    J Exp Bot; 2016 May; 67(10):2963-76. PubMed ID: 26931168
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chloroplast structure and function in ac-20, a mutant strain of Chlamydomonas reinhardi. II. Photosynthetic electron transport.
    Levine RP; Paszewski A
    J Cell Biol; 1970 Mar; 44(3):540-6. PubMed ID: 5415235
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Photosynthetic acclimation to changing environments.
    Gjindali A; Johnson GN
    Biochem Soc Trans; 2023 Apr; 51(2):473-486. PubMed ID: 36892145
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chloroplast Fe(III) chelate reductase activity is essential for seedling viability under iron limiting conditions.
    Jeong J; Cohu C; Kerkeb L; Pilon M; Connolly EL; Guerinot ML
    Proc Natl Acad Sci U S A; 2008 Jul; 105(30):10619-24. PubMed ID: 18647837
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structure-function relationships in the dual-function photosynthetic-respiratory electron-transport assembly of cyanobacteria (blue-green algae).
    Peschek GA
    Biochem Soc Trans; 1996 Aug; 24(3):729-33. PubMed ID: 8878835
    [No Abstract]   [Full Text] [Related]  

  • 48. Alternative photosynthetic electron transport pathways during anaerobiosis in the green alga Chlamydomonas reinhardtii.
    Hemschemeier A; Happe T
    Biochim Biophys Acta; 2011 Aug; 1807(8):919-26. PubMed ID: 21376011
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Iron deficiency and the loss of chloroplast iron-sulfur cluster assembly trigger distinct transcriptome changes in Arabidopsis rosettes.
    Kroh GE; Pilon M
    Metallomics; 2020 Nov; 12(11):1748-1764. PubMed ID: 33047775
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists.
    Hadariová L; Vesteg M; Hampl V; Krajčovič J
    Curr Genet; 2018 Apr; 64(2):365-387. PubMed ID: 29026976
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inhibition of photosynthetic electron transport in tobacco chloroplasts and thylakoids of the blue green alga Oscillatoria chalybea by an antiserum to synthetic zeaxanthin.
    Lehmann-Kirk U; Bader KP; Schmid GH; Radunz A
    Z Naturforsch C Biosci; 1979 Dec; 34(12):1218-21. PubMed ID: 44593
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparative biochemistry of photosynthetic light-harvesting systems.
    Glazer AN
    Annu Rev Biochem; 1983; 52():125-57. PubMed ID: 6412621
    [No Abstract]   [Full Text] [Related]  

  • 53. Light-harvesting complexes in oxygenic photosynthesis: diversity, control, and evolution.
    Grossman AR; Bhaya D; Apt KE; Kehoe DM
    Annu Rev Genet; 1995; 29():231-88. PubMed ID: 8825475
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evolutionary implications from lipids in membrane bilayers and photosynthetic complexes in cyanobacteria and chloroplasts.
    Kobayashi K; Yoshihara A; Kubota-Kawai H
    J Biochem; 2023 Oct; 174(5):399-408. PubMed ID: 37500078
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Analysis of photosynthesis in green algae through mutation studies.
    Bishop NI
    Photophysiology; 1973; 8():65-96. PubMed ID: 4149573
    [No Abstract]   [Full Text] [Related]  

  • 56. Photosynthetic sea slugs induce protective changes to the light reactions of the chloroplasts they steal from algae.
    Havurinne V; Tyystjärvi E
    Elife; 2020 Oct; 9():. PubMed ID: 33077025
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Acclimation of Arabidopsis thaliana to the light environment: the relationship between photosynthetic function and chloroplast composition.
    Bailey S; Horton P; Walters RG
    Planta; 2004 Mar; 218(5):793-802. PubMed ID: 14648116
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Auxiliary electron transport pathways in chloroplasts of microalgae.
    Peltier G; Tolleter D; Billon E; Cournac L
    Photosynth Res; 2010 Nov; 106(1-2):19-31. PubMed ID: 20607407
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Responses to iron limitation are impacted by light quality and regulated by RcaE in the chromatically acclimating cyanobacterium Fremyella diplosiphon.
    Pattanaik B; Busch AWU; Hu P; Chen J; Montgomery BL
    Microbiology (Reading); 2014 May; 160(Pt 5):992-1005. PubMed ID: 24623652
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chloroplast thioredoxin systems dynamically regulate photosynthesis in plants.
    Nikkanen L; Rintamäki E
    Biochem J; 2019 Apr; 476(7):1159-1172. PubMed ID: 30988137
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.