These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 32403495)

  • 1. Signal advance and delay due to an optical phase-sensitive amplifier.
    Brewer NR; Li T; Jones KM; Lett PD
    Opt Express; 2020 May; 28(10):14573-14579. PubMed ID: 32403495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of input chirp on phase shifters based on slow and fast light effects in semiconductor optical amplifiers.
    Xue W; Chen Y; Ohman F; Mørk J
    Opt Express; 2009 Feb; 17(3):1404-13. PubMed ID: 19188968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slow-to-fast light using absorption to gain switching in quantum-well semiconductor optical amplifier.
    Kondratko PK; Chuang SL
    Opt Express; 2007 Aug; 15(16):9963-9. PubMed ID: 19547346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency non-degenerate phase-sensitive optical parametric amplification based on four-wave-mixing in width-modulated silicon waveguides.
    Wang Z; Liu H; Sun Q; Huang N; Li X
    Opt Express; 2014 Dec; 22(25):31486-95. PubMed ID: 25607099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noiseless optical amplifier operating on hundreds of spatial modes.
    Corzo NV; Marino AM; Jones KM; Lett PD
    Phys Rev Lett; 2012 Jul; 109(4):043602. PubMed ID: 23006087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surpassing the tuning speed limit of slow-light-based tunable optical delay via four-wave mixing Bragg scattering.
    Zhang N; Fu X; Liu J; Shu C
    Opt Lett; 2018 Sep; 43(17):4212-4215. PubMed ID: 30160754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of input phase modulation to a phase-sensitive optical amplifier.
    Li T; Anderson BE; Horrom T; Jones KM; Lett PD
    Opt Express; 2016 Aug; 24(17):19871-80. PubMed ID: 27557263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrically tunable slow and fast lights in a quantum-dot semiconductor optical amplifier near 1.55 microm.
    Matsudaira A; Lee D; Kondratko P; Nielsen D; Chuang SL; Kim NJ; Oh JM; Pyun SH; Jeong WG; Jang JW
    Opt Lett; 2007 Oct; 32(19):2894-6. PubMed ID: 17909609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fundamental eigenmode of traveling-wave phase-sensitive optical parametric amplifier: experimental generation and verification.
    Bhagwat AR; Alon G; Lim OK; Chen CH; Annamalai M; Vasilyev M; Kumar P
    Opt Lett; 2013 Aug; 38(15):2858-60. PubMed ID: 23903163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental demonstration of slow and superluminal light in semiconductor optical amplifiers.
    Pesala B; Chen Z; Uskov AV; Chang-Hasnain C
    Opt Express; 2006 Dec; 14(26):12968-75. PubMed ID: 19532190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical signal to noise ratio improvement through unbalanced noise beating in phase-sensitive parametric amplifiers.
    Malik R; Kumpera A; Olsson SL; Andrekson PA; Karlsson M
    Opt Express; 2014 May; 22(9):10477-86. PubMed ID: 24921749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Realization of low frequency and controllable bandwidth squeezing based on a four-wave-mixing amplifier in rubidium vapor.
    Liu C; Jing J; Zhou Z; Pooser RC; Hudelist F; Zhou L; Zhang W
    Opt Lett; 2011 Aug; 36(15):2979-81. PubMed ID: 21808378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable optical delay with low intensity loss in a cascade structure Er
    Gao Y; Qiu W; Wu Y; Zhang X; Li Z; Lv P; Jiang Q
    Appl Opt; 2019 Jul; 58(19):5257-5261. PubMed ID: 31503622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase discrimination and simultaneous frequency conversion of the orthogonal components of an optical signal by four-wave mixing in an SOA.
    Webb RP; Dailey JM; Manning RJ; Ellis AD
    Opt Express; 2011 Oct; 19(21):20015-22. PubMed ID: 21997012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase-sensitive amplification via multi-phase-matched four-wave mixing.
    Knutson EM; Sam Cross J; Wyllie S; Glasser RT
    Opt Express; 2020 Jul; 28(15):22748-22754. PubMed ID: 32752531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved measurement of two-mode quantum correlations using a phase-sensitive amplifier.
    Li T; Anderson BE; Horrom T; Schmittberger BL; Jones KM; Lett PD
    Opt Express; 2017 Sep; 25(18):21301-21311. PubMed ID: 29041429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broad-band optical parametric gain on a silicon photonic chip.
    Foster MA; Turner AC; Sharping JE; Schmidt BS; Lipson M; Gaeta AL
    Nature; 2006 Jun; 441(7096):960-3. PubMed ID: 16791190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An all-optical frequency up-converter utilizing four-wave mixing in a semiconductor optical amplifier for sub-carrier multiplexed radio-over-fiber applications.
    Kim HJ; Song JI; Song HJ
    Opt Express; 2007 Mar; 15(6):3384-9. PubMed ID: 19532579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers.
    Su H; Kondratko P; Chuang SL
    Opt Express; 2006 May; 14(11):4800-7. PubMed ID: 19516637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signal-to-noise ratio of a semiconductor optical-amplifier-based optical phase shifter.
    Shumakher E; O Dúill S; Eisenstein G
    Opt Lett; 2009 Jul; 34(13):1940-2. PubMed ID: 19571959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.