BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 32403499)

  • 1. Compact ultrabroad-bandwidth cascaded arrayed waveguide gratings.
    van Wijk A; Doerr CR; Ali Z; Karabiyik M; Akca BI
    Opt Express; 2020 May; 28(10):14618-14626. PubMed ID: 32403499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broad-spectral-range synchronized flat-top arrayed-waveguide grating applied in a 225-channel cascaded spectrometer.
    Akca BI; Doerr CR; Sengo G; Wörhoff K; Pollnau M; de Ridder RM
    Opt Express; 2012 Jul; 20(16):18313-8. PubMed ID: 23038381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-performance interrogator with bilateral input MMI-based AWG.
    Li S; Yuan P; Li T; Li B; Xu R; Yang Y; Zhu L
    Opt Lett; 2024 Feb; 49(3):454-457. PubMed ID: 38300029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-loss demonstration and refined characterization of silicon arrayed waveguide gratings in the near-infrared.
    Stanton EJ; Volet N; Bowers JE
    Opt Express; 2017 Nov; 25(24):30651-30663. PubMed ID: 29221093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of High-Precision Parallel AWG Demodulation System.
    Jiao Y; Lin Q; Yao K; Zhao N; Xian D; Zhang F; Meng Q; Tian B; Jiang Z
    Micromachines (Basel); 2023 Aug; 14(9):. PubMed ID: 37763825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal design of an ultrasmall SOI-based 1 × 8 flat-top AWG by using an MMI.
    Li H; Bai Y; Dong X; Li E; Li Y; Liu Y; Zhou W
    ScientificWorldJournal; 2013; 2013():636912. PubMed ID: 23983643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-loss Si3N4 arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides.
    Dai D; Wang Z; Bauters JF; Tien MC; Heck MJ; Blumenthal DJ; Bowers JE
    Opt Express; 2011 Jul; 19(15):14130-6. PubMed ID: 21934775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silicon photonic arrayed waveguide grating with 64 channels for the 2 µm spectral range.
    Liu Y; Wang X; Yao Y; Du J; Song Q; Xu K
    Opt Lett; 2022 Mar; 47(5):1186-1189. PubMed ID: 35230323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compact and low insertion loss (approximately 1.0 dB) Mach- Zehnder interferometer-synchronized arrayed-waveguide grating multiplexer with flat-top frequency response.
    Shibata T; Kamei S; Kitoh T; Tanaka T; Kohtoku M
    Opt Express; 2008 Oct; 16(21):16546-51. PubMed ID: 18852763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and implementation of a Si
    Zhan J; Zhang Y; Hsu WL; Veilleux S; Dagenais M
    Opt Express; 2023 Feb; 31(4):6389-6400. PubMed ID: 36823896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra-broad bandwidth array waveguide grating for high-speed backbone network transmission.
    Wang L; Zhang J; An J; Chen J; Sun B; Zhou T; Yin X; Wang Y; Wu Y
    Opt Express; 2023 Nov; 31(23):37829-37842. PubMed ID: 38017904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D integrated wavelength demultiplexer based on a square-core fiber and dual-layer arrayed waveguide gratings.
    Jiang X; Yang Z; Liu Z; Dang Z; Ding Z; Chang Q; Zhang Z
    Opt Express; 2021 Jan; 29(2):2090-2098. PubMed ID: 33726409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preliminary investigation of an SOI-based arrayed waveguide grating demodulation integration microsystem.
    Li H; Zhou W; Liu Y; Dong X; Zhang C; Miao C; Zhang M; Li E; Tang C
    Sci Rep; 2014 May; 4():4848. PubMed ID: 24797561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of chromatic dispersion due to coupling for synchronized-router-based flat-passband filter using multiple-input arrayed waveguide grating.
    Maru K; Fujii Y
    Opt Express; 2009 Nov; 17(24):22260-70. PubMed ID: 19997474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrabroadband and compact 2 × 2 3-dB coupler based on trapezoidal subwavelength gratings.
    Hu R; Sun L; Zhang Z; Sun Q; Pan Y; Su Y
    Opt Express; 2023 Jul; 31(14):23542-23550. PubMed ID: 37475435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silicon Nanowire-Assisted High Uniform Arrayed Waveguide Grating.
    Yuan S; Feng J; Yu Z; Chen J; Liu H; Chen Y; Guo S; Huang F; Akimoto R; Zeng H
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36616091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design, simulation and characterization of integrated photonic spectrographs for astronomy: generation-I AWG devices based on canonical layouts.
    Stoll A; Madhav KV; Roth MM
    Opt Express; 2021 Aug; 29(16):24947-24971. PubMed ID: 34614838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-loss and low-crosstalk 8 × 8 silicon nanowire AWG routers fabricated with CMOS technology.
    Wang J; Sheng Z; Li L; Pang A; Wu A; Li W; Wang X; Zou S; Qi M; Gan F
    Opt Express; 2014 Apr; 22(8):9395-403. PubMed ID: 24787827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Demonstration of channelized tunable optical dispersion compensator based on arrayed-waveguide grating and liquid crystal on silicon.
    Seno K; Suzuki K; Ooba N; Watanabe K; Ishii M; Ono H; Mino S
    Opt Express; 2010 Aug; 18(18):18565-79. PubMed ID: 20940749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design trade-offs for silicon-on-insulator-based AWGs for (de)multiplexer applications.
    Pathak S; Van Thourhout D; Bogaerts W
    Opt Lett; 2013 Aug; 38(16):2961-4. PubMed ID: 24104621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.