These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 32403528)

  • 1. A packaged, fiber-coupled waveguide-enhanced Raman spectroscopic sensor.
    Kita DM; Michon J; Hu J
    Opt Express; 2020 May; 28(10):14963-14972. PubMed ID: 32403528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Passive photonic integration of lattice filters for waveguide-enhanced Raman spectroscopy.
    Tyndall NF; Stievater TH; Kozak DA; Pruessner MW; Rabinovich WS
    Opt Express; 2020 Nov; 28(23):34927-34934. PubMed ID: 33182950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Waveguide Enhanced Raman Spectroscopy for Biosensing: A Review.
    Ettabib MA; Marti A; Liu Z; Bowden BM; Zervas MN; Bartlett PN; Wilkinson JS
    ACS Sens; 2021 Jun; 6(6):2025-2045. PubMed ID: 34114813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Waveguide-Enhanced Raman Spectroscopy (WERS): An Emerging Chip-Based Tool for Chemical and Biological Sensing.
    Wang P; Miller BL
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Power Budget Analysis for Waveguide-Enhanced Raman Spectroscopy.
    Wang Z; Pearce SJ; Lin YC; Zervas MN; Bartlett PN; Wilkinson JS
    Appl Spectrosc; 2016 Aug; 70(8):1384-91. PubMed ID: 27301326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated Nanophotonic Waveguide-Based Devices for IR and Raman Gas Spectroscopy.
    Alberti S; Datta A; Jágerská J
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High index contrast photonic platforms for on-chip Raman spectroscopy.
    Raza A; Clemmen S; Wuytens P; de Goede M; Tong ASK; Le Thomas N; Liu C; Suntivich J; Skirtach AG; Garcia-Blanco SM; Blumenthal DJ; Wilkinson JS; Baets R
    Opt Express; 2019 Aug; 27(16):23067-23079. PubMed ID: 31510589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimized design for grating-coupled waveguide-enhanced Raman spectroscopy.
    Ettabib MA; Liu Z; Zervas MN; Wilkinson JS
    Opt Express; 2020 Dec; 28(25):37226-37235. PubMed ID: 33379561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Figure-of-Merit Characterization of Hydrogen-Bond Acidic Sorbents for Waveguide-Enhanced Raman Spectroscopy.
    Tyndall NF; Stievater TH; Kozak DA; Pruessner MW; Roxworthy BJ; Rabinovich WS; Roberts CA; McGill RA; Miller BL; Luta E; Yates MZ
    ACS Sens; 2020 Mar; 5(3):831-836. PubMed ID: 32153176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid plasmonic grating slot waveguide with high field enhancement for an on-chip surface-enhanced Raman scattering sensor.
    Li S; Xia L; Yang Z; Zhou M; Zhao B; Li W
    Appl Opt; 2020 Jan; 59(3):748-755. PubMed ID: 32225205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multifunctional optofluidic lab-on-chip platform for Raman and fluorescence spectroscopic microfluidic analysis.
    Persichetti G; Grimaldi IA; Testa G; Bernini R
    Lab Chip; 2017 Jul; 17(15):2631-2639. PubMed ID: 28664956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single mode waveguide platform for spontaneous and surface-enhanced on-chip Raman spectroscopy.
    Dhakal A; Peyskens F; Clemmen S; Raza A; Wuytens P; Zhao H; Le Thomas N; Baets R
    Interface Focus; 2016 Aug; 6(4):20160015. PubMed ID: 27499842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inline integration of offset MMF-capillary-MMF structure as a portable and compact fiber-optic surface-enhanced Raman scattering microfluidic chip.
    Li S; Xia L; Zhang H; Li W; Li K; Chen X
    Appl Opt; 2018 Dec; 57(36):10548-10552. PubMed ID: 30645403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raman gain induced mode evolution and on-demand coupling control in whispering-gallery-mode microcavities.
    Yang X; Özdemir ŞK; Peng B; Yilmaz H; Lei FC; Long GL; Yang L
    Opt Express; 2015 Nov; 23(23):29573-83. PubMed ID: 26698440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of Fiber-Enhanced Raman Gas Sensing Based on Raman Chemical Imaging.
    Yan D; Popp J; Frosch T
    Anal Chem; 2017 Nov; 89(22):12269-12275. PubMed ID: 29087686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optofluidic in-fiber integrated surface-enhanced Raman spectroscopy detection based on a hollow optical fiber with a suspended core.
    Gao D; Yang X; Teng P; Liu Z; Yang J; Kong D; Zhang J; Luo M; Li Z; Tian F; Yuan L
    Opt Lett; 2019 Nov; 44(21):5173-5176. PubMed ID: 31674959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silicon Nitride Background in Nanophotonic Waveguide Enhanced Raman Spectroscopy.
    Dhakal A; Wuytens P; Raza A; Le Thomas N; Baets R
    Materials (Basel); 2017 Feb; 10(2):. PubMed ID: 28772499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raman probe using a single hollow waveguide.
    Komachi Y; Sato H; Matsuura Y; Miyagi M; Tashiro H
    Opt Lett; 2005 Nov; 30(21):2942-4. PubMed ID: 16279476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A surface-enhanced Raman scattering optrode prepared by in situ photoinduced reactions and its application for highly sensitive on-chip detection.
    Wang S; Liu C; Wang H; Chen G; Cong M; Song W; Jia Q; Xu S; Xu W
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11706-13. PubMed ID: 24978908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated Surface-Enhanced Raman Spectroscopy (SERS) Chip Based on a Total Reflection Liquid Core Waveguide.
    Lai C; Chen G; Chen L; Li J; Liu Q; Fang S
    Appl Spectrosc; 2017 Aug; 71(8):2021-2025. PubMed ID: 28555498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.