These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 32403562)
1. Potential for nocturnal satellite detection of suspended matter concentrations in coastal waters using a panchromatic band: a feasibility study based on VIIRS (NASA/NOAA) spectral and radiometric specifications. Chami M; Larnicol M; Migeon S; Minghelli A; Mathieu S Opt Express; 2020 May; 28(10):15314-15330. PubMed ID: 32403562 [TBL] [Abstract][Full Text] [Related]
2. NOAA-20 VIIRS polarization effect and its correction. Sun J; Wang M; Jiang L; Xiong X Appl Opt; 2019 Aug; 58(24):6655-6665. PubMed ID: 31503597 [TBL] [Abstract][Full Text] [Related]
3. Technique for monitoring performance of VIIRS reflective solar bands for ocean color data processing. Wang M; Shi W; Jiang L; Liu X; Son S; Voss K Opt Express; 2015 Jun; 23(11):14446-60. PubMed ID: 26072806 [TBL] [Abstract][Full Text] [Related]
4. Rayleigh radiance computations for satellite remote sensing: accounting for the effect of sensor spectral response function. Wang M Opt Express; 2016 May; 24(11):12414-29. PubMed ID: 27410156 [TBL] [Abstract][Full Text] [Related]
5. NIR- and SWIR-based on-orbit vicarious calibrations for satellite ocean color sensors. Wang M; Shi W; Jiang L; Voss K Opt Express; 2016 Sep; 24(18):20437-53. PubMed ID: 27607649 [TBL] [Abstract][Full Text] [Related]
6. On-orbit calibration of the Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite for ocean color applications. Eplee RE; Turpie KR; Meister G; Patt FS; Franz BA; Bailey SW Appl Opt; 2015 Mar; 54(8):1984-2006. PubMed ID: 25968375 [TBL] [Abstract][Full Text] [Related]
7. Out-of-band effects of satellite ocean color sensors. Wang M; Naik P; Son S Appl Opt; 2016 Mar; 55(9):2312-23. PubMed ID: 27140568 [TBL] [Abstract][Full Text] [Related]
8. On-orbit radiometric calibration of Suomi NPP VIIRS reflective solar bands using the Moon and solar diffuser. Choi T; Shao X; Cao C Appl Opt; 2018 Nov; 57(32):9533-9542. PubMed ID: 30461732 [TBL] [Abstract][Full Text] [Related]
9. Monitoring the Impacts of Wildfires on Forest Ecosystems and Public Health in the Exo-Urban Environment Using High-Resolution Satellite Aerosol Products from the Visible Infrared Imaging Radiometer Suite (VIIRS). Huff AK; Kondragunta S; Zhang H; Hoff RM Environ Health Insights; 2015; 9(Suppl 2):9-18. PubMed ID: 26078588 [TBL] [Abstract][Full Text] [Related]
10. Global Estimation of Suspended Particulate Matter From Satellite Ocean Color Imagery. Wei J; Wang M; Jiang L; Yu X; Mikelsons K; Shen F J Geophys Res Oceans; 2021 Aug; 126(8):e2021JC017303. PubMed ID: 35844263 [TBL] [Abstract][Full Text] [Related]
11. Satellite-measured water properties in high altitude Lake Tahoe. Wang M; Shi W; Watanabe S Water Res; 2020 Jul; 178():115839. PubMed ID: 32353611 [TBL] [Abstract][Full Text] [Related]
12. High-frequency and tidal period observations of suspended particulate matter in coastal waters by AHI/Himawari-8. Ding X; He X; Bai Y; Zhu Q; Gong F; Li H; Li J Opt Express; 2020 Sep; 28(19):27387-27404. PubMed ID: 32988034 [TBL] [Abstract][Full Text] [Related]
13. Radiometric calibration of ocean color satellite sensors using AERONET-OC data. Hlaing S; Gilerson A; Foster R; Wang M; Arnone R; Ahmed S Opt Express; 2014 Sep; 22(19):23385-401. PubMed ID: 25321808 [TBL] [Abstract][Full Text] [Related]
14. In situ spectral response of the Arabian Gulf and Sea of Oman coastal waters to bio-optical properties. Al Shehhi MR; Gherboudj I; Ghedira H J Photochem Photobiol B; 2017 Oct; 175():235-243. PubMed ID: 28915493 [TBL] [Abstract][Full Text] [Related]
15. Multispectral decomposition for the removal of out-of-band effects of visible/infrared imaging radiometer suite visible and near-infrared bands. Gao BC; Chen W Appl Opt; 2012 Jun; 51(18):4078-86. PubMed ID: 22722283 [TBL] [Abstract][Full Text] [Related]
16. Diurnal remote sensing of coastal/oceanic waters: a radiometric analysis for Geostationary Coastal and Air Pollution Events. Pahlevan N; Lee Z; Hu C; Schott JR Appl Opt; 2014 Feb; 53(4):648-65. PubMed ID: 24514182 [TBL] [Abstract][Full Text] [Related]
17. Neural Networks Technique for Filling Gaps in Satellite Measurements: Application to Ocean Color Observations. Krasnopolsky V; Nadiga S; Mehra A; Bayler E; Behringer D Comput Intell Neurosci; 2016; 2016():6156513. PubMed ID: 26819586 [TBL] [Abstract][Full Text] [Related]
18. Qualitative Dynamics of Suspended Particulate Matter in the Changjiang Estuary from Geostationary Ocean Color Images: An Empirical, Regional Modeling Approach. Shang D; Xu H Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30501092 [TBL] [Abstract][Full Text] [Related]
19. Satellite observations reveal anthropogenic pressure significantly affects the suspended particulate matter concentrations in coastal waters of Hainan Island. Zhong R; Liu S; Chen S; Zhao L; Yang D J Environ Manage; 2024 Aug; 365():121617. PubMed ID: 38968896 [TBL] [Abstract][Full Text] [Related]
20. Classification of Hyperspectral or Trichromatic Measurements of Ocean Color Data into Spectral Classes. Prasad DK; Agarwal K Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 27011185 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]