These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 32403569)

  • 1. Finite-key analysis for round-robin-differential-phase-shift quantum key distribution.
    Liu H; Yin ZQ; Wang R; Lu FY; Wang S; Chen W; Huang W; Xu BJ; Guo GC; Han ZF
    Opt Express; 2020 May; 28(10):15416-15423. PubMed ID: 32403569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Round-robin-differential-phase-shift quantum key distribution with monitoring signal disturbance.
    Wang R; Yin ZQ; Wang S; Chen W; Guo GC; Han ZF
    Opt Lett; 2018 Sep; 43(17):4228-4231. PubMed ID: 30160758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plug-and-play round-robin differential phase-shift quantum key distribution.
    Mao QP; Wang L; Zhao SM
    Sci Rep; 2017 Nov; 7(1):15435. PubMed ID: 29133835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved security bound for the round-robin-differential-phase-shift quantum key distribution.
    Yin ZQ; Wang S; Chen W; Han YG; Wang R; Guo GC; Han ZF
    Nat Commun; 2018 Jan; 9(1):457. PubMed ID: 29386505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Round-robin differential-phase-shift quantum key distribution with a passive decoy state method.
    Liu L; Guo FZ; Qin SJ; Wen QY
    Sci Rep; 2017 Feb; 7():42261. PubMed ID: 28198808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental passive round-robin differential phase-shift quantum key distribution.
    Guan JY; Cao Z; Liu Y; Shen-Tu GL; Pelc JS; Fejer MM; Peng CZ; Ma X; Zhang Q; Pan JW
    Phys Rev Lett; 2015 May; 114(18):180502. PubMed ID: 26000991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Afterpulse effects in quantum key distribution without monitoring signal disturbance.
    Liu H; Yin ZQ; Wang ZH; Shan YG; Wang S; Chen W; Dong C; Guo GC; Han ZF
    Opt Lett; 2023 Apr; 48(7):1558-1561. PubMed ID: 37221709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Practical round-robin differential phase-shift quantum key distribution.
    Zhang YY; Bao WS; Zhou C; Li HW; Wang Y; Jiang MS
    Opt Express; 2016 Sep; 24(18):20763-73. PubMed ID: 27607679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Security Analysis of a Passive Continuous-Variable Quantum Key Distribution by Considering Finite-Size Effect.
    Xu S; Li Y; Wang Y; Mao Y; Wu X; Guo Y
    Entropy (Basel); 2021 Dec; 23(12):. PubMed ID: 34946004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite-key analysis for twin-field quantum key distribution based on generalized operator dominance condition.
    Wang RQ; Yin ZQ; Lu FY; Wang R; Wang S; Chen W; Huang W; Xu BJ; Guo GC; Han ZF
    Opt Express; 2020 Jul; 28(15):22594-22605. PubMed ID: 32752517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Practical Quantum Private Database Queries Based on Passive Round-Robin Differential Phase-shift Quantum Key Distribution.
    Li J; Yang YG; Chen XB; Zhou YH; Shi WM
    Sci Rep; 2016 Aug; 6():31738. PubMed ID: 27539654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite-Key Analysis for Quantum Key Distribution with Discrete-Phase Randomization.
    Wang RQ; Yin ZQ; Jin XH; Wang R; Wang S; Chen W; Guo GC; Han ZF
    Entropy (Basel); 2023 Jan; 25(2):. PubMed ID: 36832625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite-key analysis for twin-field quantum key distribution with composable security.
    Yin HL; Chen ZB
    Sci Rep; 2019 Nov; 9(1):17113. PubMed ID: 31745131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential Phase Shift Quantum Secret Sharing Using a Twin Field with Asymmetric Source Intensities.
    Jia ZY; Gu J; Li BH; Yin HL; Chen ZB
    Entropy (Basel); 2021 Jun; 23(6):. PubMed ID: 34199849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unconditional security of single-photon differential phase shift quantum key distribution.
    Wen K; Tamaki K; Yamamoto Y
    Phys Rev Lett; 2009 Oct; 103(17):170503. PubMed ID: 19905739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biased decoy-state measurement-device-independent quantum cryptographic conferencing with finite resources.
    Chen R; Bao W; Zhou C; Li H; Wang Y; Bao H
    Opt Express; 2016 Mar; 24(6):6594-605. PubMed ID: 27136849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite-size security of continuous-variable quantum key distribution with digital signal processing.
    Matsuura T; Maeda K; Sasaki T; Koashi M
    Nat Commun; 2021 Jan; 12(1):252. PubMed ID: 33441559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved statistical fluctuation analysis for measurement-device-independent quantum key distribution with four-intensity decoy-state method.
    Mao CC; Zhou XY; Zhu JR; Zhang CH; Zhang CM; Wang Q
    Opt Express; 2018 May; 26(10):13289-13300. PubMed ID: 29801354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite-key bound for semi-device-independent quantum key distribution.
    Zhou C; Xu P; Bao WS; Wang Y; Zhang Y; Jiang MS; Li HW
    Opt Express; 2017 Jul; 25(15):16971-16980. PubMed ID: 28789196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite-key analysis for measurement-device-independent quantum key distribution.
    Curty M; Xu F; Cui W; Lim CC; Tamaki K; Lo HK
    Nat Commun; 2014 Apr; 5():3732. PubMed ID: 24776959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.