These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Non-iterative phase-only Fourier hologram generation with high image quality. Pang H; Wang J; Zhang M; Cao A; Shi L; Deng Q Opt Express; 2017 Jun; 25(13):14323-14333. PubMed ID: 28789018 [TBL] [Abstract][Full Text] [Related]
7. Non-iterative phase hologram generation for color holographic display. Zhang C; Wu F; Zhou J; Wei S Opt Express; 2022 Jan; 30(1):195-209. PubMed ID: 35201199 [TBL] [Abstract][Full Text] [Related]
8. Non-iterative phase hologram generation with adaptive weighted constraints for color holographic display. Shen C; Wang B; Wang A; Zhang Y; Zhang C; Wei S Appl Opt; 2022 Sep; 61(26):7587-7594. PubMed ID: 36256357 [TBL] [Abstract][Full Text] [Related]
9. Hologram conversion for speckle free reconstruction using light field extraction and deep learning. Park DY; Park JH Opt Express; 2020 Feb; 28(4):5393-5409. PubMed ID: 32121761 [TBL] [Abstract][Full Text] [Related]
10. Optimized phase-only hologram generation for high-quality holographic display. Zuo J; Leng J; Fu Y Appl Opt; 2022 Dec; 61(35):10519-10527. PubMed ID: 36607114 [TBL] [Abstract][Full Text] [Related]
11. Optimized random phase only holograms. Zea AV; Barrera Ramirez JF; Torroba R Opt Lett; 2018 Feb; 43(4):731-734. PubMed ID: 29444064 [TBL] [Abstract][Full Text] [Related]
12. Phase dual-resolution networks for a computer-generated hologram. Yu T; Zhang S; Chen W; Liu J; Zhang X; Tian Z Opt Express; 2022 Jan; 30(2):2378-2389. PubMed ID: 35209379 [TBL] [Abstract][Full Text] [Related]
13. Speckle reduction for single sideband-encoded computer-generated holograms by using an optimized carrier wave. Min K; Min D; Hong J; Park JH Opt Express; 2024 Apr; 32(8):13508-13526. PubMed ID: 38859319 [TBL] [Abstract][Full Text] [Related]
14. High-quality interferenceless coded aperture correlation holography with optimized high SNR holograms. Liu C; Man T; Wan Y Appl Opt; 2022 Jan; 61(3):661-668. PubMed ID: 35200769 [TBL] [Abstract][Full Text] [Related]
15. High speed phase retrieval of in-line holograms by the assistance of corresponding off-axis holograms. Orzó L Opt Express; 2015 Jun; 23(13):16638-49. PubMed ID: 26191676 [TBL] [Abstract][Full Text] [Related]
16. Comparison of double-phase hologram and binary amplitude encoding: holographic projection and vortex beam generation. Shimobaba T; Wang F; Starobrat J; Kowalczyk A; Suszek J; Ito T Appl Opt; 2023 Oct; 62(28):7471-7479. PubMed ID: 37855516 [TBL] [Abstract][Full Text] [Related]
17. Full image reconstruction with reduced speckle noise, from a partially illuminated Fresnel hologram, using a structured random phase. Cruz ML Appl Opt; 2019 Mar; 58(8):1917-1923. PubMed ID: 30874056 [TBL] [Abstract][Full Text] [Related]
18. High-accuracy method for holographic image projection with suppressed speckle noise. Pang H; Wang J; Cao A; Deng Q Opt Express; 2016 Oct; 24(20):22766-22776. PubMed ID: 27828347 [TBL] [Abstract][Full Text] [Related]
19. Novel computer-generated hologram encoding method based on partially temporal coherent light. Duan X; Liu J; Li X; Xue G; Zhao T; Duan J Opt Express; 2019 Mar; 27(5):6851-6862. PubMed ID: 30876262 [TBL] [Abstract][Full Text] [Related]
20. Discrimination between normal and cancer white blood cells using holographic projection technique. Abdelazeem RM; Ghareab Abdelsalam Ibrahim D PLoS One; 2022; 17(10):e0276239. PubMed ID: 36264929 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]