These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 32403846)

  • 1. Compact and movable ozone differential absorption lidar system based on an all-solid-state, tuning-free laser source.
    Liu P; Zhang T; Sun X; Fan G; Xiang Y; Fu Y; Dong Y
    Opt Express; 2020 Apr; 28(9):13786-13800. PubMed ID: 32403846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential-absorption-lidar measurement of tropospheric ozone with excimer-Raman hybrid laser.
    Uchino O; Tokunaga M; Maeda M; Miyazoe Y
    Opt Lett; 1983 Jul; 8(7):347-9. PubMed ID: 19718110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman shifting of KrF laser radiation for tropospheric ozone measurements.
    Grant WB; Browell EV; Higdon NS; Ismail S
    Appl Opt; 1991 Jun; 30(18):2628-33. PubMed ID: 20700252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tropospheric ozone differential-absorption lidar using stimulated Raman scattering in carbon dioxide.
    Nakazato M; Nagai T; Sakai T; Hirose Y
    Appl Opt; 2007 Apr; 46(12):2269-79. PubMed ID: 17415396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compact airborne lidar for tropospheric ozone: description and field measurements.
    Ancellet G; Ravetta FO
    Appl Opt; 1998 Aug; 37(24):5509-21. PubMed ID: 18286036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compact high-pulse-energy ultraviolet laser source for ozone lidar measurements.
    Elsayed KA; DeYoung RJ; Petway LB; Edwards WC; Barnes JC; Elsayed-Ali HE
    Appl Opt; 2003 Nov; 42(33):6650-60. PubMed ID: 14658468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rotational vibrational-rotational Raman differential absorption lidar for atmospheric ozone measurements: methodology and experiment.
    Reichardt J; Bisson SE; Reichardt S; Weitkamp C; Neidhart B
    Appl Opt; 2000 Nov; 39(33):6072-9. PubMed ID: 18354612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the usefulness of an airborne lidar for O3 layer analysis in the free troposphere and the planetary boundary layer.
    Ancellet G; Ravetta F
    J Environ Monit; 2003 Feb; 5(1):47-56. PubMed ID: 12619756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Description and evaluation of a tropospheric ozone lidar implemented on an existing lidar in the southern subtropics.
    Baray JL; Leveau J; Porteneuve J; Ancellet G; Keckhut P; Posny F; Baldy S
    Appl Opt; 1999 Nov; 38(33):6808-17. PubMed ID: 18324220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential absorption lidar system for routine monitoring of tropospheric ozone.
    Sunesson JA; Apituley A; Swart DP
    Appl Opt; 1994 Oct; 33(30):7045-58. PubMed ID: 20941256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NASA multipurpose airborne DIAL system and measurements of ozone and aerosol profiles.
    Browell EV; Carter AF; Shipley ST; Allen RJ; Butler CF; Mayo MN; Siviter JH; Hall WM
    Appl Opt; 1983 Feb; 22(4):522-34. PubMed ID: 18195821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Airborne remote sensing of tropospheric water vapor with a near-infrared differential absorption lidar system.
    Ehret G; Kiemle C; Renger W; Simmet G
    Appl Opt; 1993 Aug; 32(24):4534-51. PubMed ID: 20830116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and application of an airborne differential absorption lidar for the simultaneous measurement of ozone and water vapor profiles in the tropopause region.
    Fix A; Steinebach F; Wirth M; Schäfler A; Ehret G
    Appl Opt; 2019 Aug; 58(22):5892-5900. PubMed ID: 31503903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of ground-based Lidar for studies of the dynamics of ozone in a mountainous basin.
    Schröter M; Obermeier A; Brüggemann D; Klemm O
    Environ Sci Pollut Res Int; 2002; 9(6):381-4. PubMed ID: 12515345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ozone and water-vapor measurements by Raman lidar in the planetary boundary layer: error sources and field measurements.
    Lazzarotto B; Frioud M; Larchevêque G; Mitev V; Quaglia P; Simeonov V; Thompson A; van den Bergh H; Calpini B
    Appl Opt; 2001 Jun; 40(18):2985-97. PubMed ID: 18357316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mobile differential absorption lidar for simultaneous observations of tropospheric and stratospheric ozone over Tibet.
    Fang X; Li T; Ban C; Wu Z; Li J; Li F; Cen Y; Tian B
    Opt Express; 2019 Feb; 27(4):4126-4139. PubMed ID: 30876033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic DIAL lidar monitoring of the stratospheric ozone vertical distribution at Observatoire de Haute-Provence (43.92 degrees N, 5.71 degrees E).
    Godin-Beekmann S; Porteneuve J; Garnier A
    J Environ Monit; 2003 Feb; 5(1):57-67. PubMed ID: 12619757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential-absorption lidar measurements in the oxygen A band using a ruby lidar and stimulated Raman scattering.
    Barton IJ; Marshall JF
    Opt Lett; 1979 Mar; 4(3):78-80. PubMed ID: 19687806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple-scattering effect on ozone retrieval from space-based differential absorption lidar measurements.
    Pal SR; Bissonnette LR
    Appl Opt; 1998 Sep; 37(27):6500-10. PubMed ID: 18286159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SRS conversion efficiency assessment of a single cell Raman gas mixture for DIAL ozone lidar.
    Raman MR; Chen WN
    Appl Opt; 2024 Feb; 63(4):874-887. PubMed ID: 38437383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.