These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 32403867)

  • 1. Co-design of a differential transimpedance amplifier and balanced photodetector for a sub-pJ/bit silicon photonics receiver.
    Li K; Liu S; Ruan X; Thomson DJ; Hong Y; Yang F; Zhang L; Lacava C; Meng F; Zhang W; Petropoulos P; Zhang F; Reed GT
    Opt Express; 2020 Apr; 28(9):14038-14054. PubMed ID: 32403867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 4-channel 200 Gb/s WDM O-band silicon photonic transceiver sub-assembly.
    Moralis-Pegios M; Pitris S; Alexoudi T; Terzenidis N; Ramon H; Lambrecht J; Bauwelinck J; Yin X; Ban Y; de Heyn P; van Campenhout J; Lamprecht T; Lehnman A; Pleros N
    Opt Express; 2020 Feb; 28(4):5706-5714. PubMed ID: 32121786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silicon photonic receiver and transmitter operating up to 36 Gb/s for λ~1550 nm.
    Joo J; Jang KS; Kim SH; Kim IG; Oh JH; Kim SA; Jeong GS; Kim Y; Park JE; Kim S; Chi H; Jeong DK; Kim G
    Opt Express; 2015 May; 23(9):12232-43. PubMed ID: 25969309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental demonstration of a 160 Gbit/s 3D-integrated silicon photonics receiver with 1.2-pJ/bit power consumption.
    Wu D; Wang D; Chen D; Yan J; Dang Z; Feng J; Chen S; Feng P; Zhang H; Fu Y; Wang L; Hu X; Xiao X; Yu S
    Opt Express; 2023 Jan; 31(3):4129-4139. PubMed ID: 36785388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fully-integrated 12.5-Gb/s 850-nm CMOS optical receiver based on a spatially-modulated avalanche photodetector.
    Lee MJ; Youn JS; Park KY; Choi WY
    Opt Express; 2014 Feb; 22(3):2511-8. PubMed ID: 24663543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrated 12.5-Gb/s optoelectronic receiver with a silicon avalanche photodetector in standard SiGe BiCMOS technology.
    Youn JS; Lee MJ; Park KY; Rücker H; Choi WY
    Opt Express; 2012 Dec; 20(27):28153-62. PubMed ID: 23263050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monolithically integrated 112 Gbps PAM4 optical transmitter and receiver in a 45 nm CMOS-silicon photonics process.
    Baehr-Jones T; Ardalan S; Chang M; Jafarlou S; Serey X; Zarris G; Thompson G; Darbinian A; West B; Behnia B; Velev V; Li YZ; Roelofs K; Wu W; Mali J; Zhan J; Ophir N; Horng C; Narevich R; Guan F; Yang J; Wu H; Maupin P; Manley R; Ahuja Y; Novack A; Wang L; Streshinsky M
    Opt Express; 2023 Jul; 31(15):24926-24938. PubMed ID: 37475308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-speed receiver based on waveguide germanium photodetector wire-bonded to 90nm SOI CMOS amplifier.
    Pan H; Assefa S; Green WM; Kuchta DM; Schow CL; Rylyakov AV; Lee BG; Baks CW; Shank SM; Vlasov YA
    Opt Express; 2012 Jul; 20(16):18145-55. PubMed ID: 23038362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 100 Gbit/s co-designed optical receiver with hybrid integration.
    Li W; Zhang H; Hu X; Lu D; Chen D; Chen S; He J; Wang L; Qi N; Xiao X; Yu S
    Opt Express; 2021 May; 29(10):14304-14313. PubMed ID: 33985153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A sub-picojoule-per-bit CMOS photonic receiver for densely integrated systems.
    Zheng X; Liu F; Patil D; Thacker H; Luo Y; Pinguet T; Mekis A; Yao J; Li G; Shi J; Raj K; Lexau J; Alon E; Ho R; Cunningham JE; Krishnamoorthy AV
    Opt Express; 2010 Jan; 18(1):204-11. PubMed ID: 20173840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SNR characteristics of 850-nm OEIC receiver with a silicon avalanche photodetector.
    Youn JS; Lee MJ; Park KY; Rücker H; Choi WY
    Opt Express; 2014 Jan; 22(1):900-7. PubMed ID: 24515049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fully Integrated 24-GHz 1TX-2RX Transceiver for Compact FMCW Radar Applications.
    Ko GH; Moon SJ; Kim SH; Kim JG; Baek D
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38474998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 52 Gbps PAM4 receiver sensitivity study for 400GBase-LR8 system using directly modulated laser.
    Motaghiannezam R; Pham T; Chen A; Du T; Kocot C; Xu J; Huebner B
    Opt Express; 2016 Apr; 24(7):7374-80. PubMed ID: 27137027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 16 GHz silicon-based monolithic balanced photodetector with on-chip capacitors for 25 Gbaud front-end receivers.
    Hai MS; Sakib MN; Liboiron-Ladouceur O
    Opt Express; 2013 Dec; 21(26):32680-9. PubMed ID: 24514861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 13.56-mbps pulse delay modulation based transceiver for simultaneous near-field data and power transmission.
    Kiani M; Ghovanloo M
    IEEE Trans Biomed Circuits Syst; 2015 Feb; 9(1):1-11. PubMed ID: 24760945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-cost and miniaturized 100-Gb/s (2 × 50 Gb/s) PAM-4 TO-packaged ROSA for data center networks.
    Kang SK; Huh JY; Lee JH; Lee JK
    Opt Express; 2018 Mar; 26(5):6172-6181. PubMed ID: 29529810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A low noise transimpedance amplifier for optical receiver.
    Li C; Xie S; Zhou G; Mao L; Qiu B
    Rev Sci Instrum; 2021 Mar; 92(3):034706. PubMed ID: 33820025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 200 Gb/s transmission using a dual-polarization O-Band silicon photonic intensity modulator for Stokes vector direct detection applications.
    El-Fiky E; Osman M; Sowailem M; Samani A; Patel D; Li R; Saber MG; Wang Y; Abadia N; D'Mello Y; Plant DV
    Opt Express; 2017 Nov; 25(24):30336-30348. PubMed ID: 29221063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synchronous OEIC Integrating Receiver for Optically Reconfigurable Gate Arrays.
    Sánchez-Azqueta C; Goll B; Celma S; Zimmermann H
    Sensors (Basel); 2016 May; 16(6):. PubMed ID: 27231915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing data rate of an optical IMDD system using a cost-efficient dual-band transmission scheme based on RTZ DAC and sub-Nyquist sampling ADC.
    Deng R; He J; Yu J; Wei Y; Xiao X; Lv K; Xin X; Chang GK
    Opt Express; 2018 Apr; 26(9):11599-11607. PubMed ID: 29716078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.