These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 32403875)

  • 21. Selective enhancement of optical nonlinearity in two-dimensional organic-inorganic lead iodide perovskites.
    Saouma FO; Stoumpos CC; Wong J; Kanatzidis MG; Jang JI
    Nat Commun; 2017 Sep; 8(1):742. PubMed ID: 28963449
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Honeycomb-lattice plasmonic absorbers at NIR: anomalous high-order resonance.
    Chen Y; Dai J; Yan M; Qiu M
    Opt Express; 2013 Sep; 21(18):20873-9. PubMed ID: 24103960
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wide angle and narrow-band asymmetric absorption in visible and near-infrared regime through lossy Bragg stacks.
    Shu S; Zhan Y; Lee C; Lu J; Li YY
    Sci Rep; 2016 Jun; 6():27061. PubMed ID: 27251768
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tunable dual-band perfect absorbers based on extraordinary optical transmission and Fabry-Perot cavity resonance.
    Zheng HY; Jin XR; Park JW; Lu YH; Rhee JY; Jang WH; Cheong H; Lee YP
    Opt Express; 2012 Oct; 20(21):24002-9. PubMed ID: 23188367
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Triple-band black-phosphorus-based absorption using critical coupling.
    Xu Y; Li H; Zhang X; Bai Z; Zhang Z; Qin S
    Appl Opt; 2020 Oct; 59(28):9003-9009. PubMed ID: 33104589
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Graphene-based dual-band independently tunable infrared absorber.
    Sun P; You C; Mahigir A; Liu T; Xia F; Kong W; Veronis G; Dowling JP; Dong L; Yun M
    Nanoscale; 2018 Aug; 10(33):15564-15570. PubMed ID: 30088500
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multi Band Gap Electronic Structure in CH
    Ong KP; Wu S; Nguyen TH; Singh DJ; Fan Z; Sullivan MB; Dang C
    Sci Rep; 2019 Feb; 9(1):2144. PubMed ID: 30765739
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of Orientational Disorder on the Optical Absorption Properties of the Hybrid Metal-Halide Perovskite CH
    Martynow M; Głowienka D; Szmytkowski J; Galagan Y; Guthmuller J
    Chemphyschem; 2019 Dec; 20(23):3228-3237. PubMed ID: 31550412
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dual-band tunable perfect metamaterial absorber based on graphene.
    Wang F; Huang S; Li L; Chen W; Xie Z
    Appl Opt; 2018 Aug; 57(24):6916-6922. PubMed ID: 30129577
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analogue of electromagnetically induced absorption with double absorption windows in a plasmonic system.
    Zhong N; Dai Q; Liang R; Li X; Tan X; Zhang X; Wei Z; Wang F; Liu H; Meng H
    PLoS One; 2017; 12(6):e0179609. PubMed ID: 28662059
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Polarization Independent Quasi-TEM Metamaterial Absorber for X and Ku Band Sensing Applications.
    Hoque A; Tariqul Islam M; Almutairi AF; Alam T; Jit Singh M; Amin N
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30513675
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wide-angle, polarization-insensitive, and broadband metamaterial absorber based on multilayered metal-dielectric structures.
    Liu P; Lan T
    Appl Opt; 2017 May; 56(14):4201-4205. PubMed ID: 29047556
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tuning the gap of lead-based halide perovskites by introducing superalkali species at the cationic sites of ABX
    Paduani C; Rappe AM
    Phys Chem Chem Phys; 2017 Aug; 19(31):20619-20626. PubMed ID: 28737790
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Perfect narrow band absorber for sensing applications.
    Luo S; Zhao J; Zuo D; Wang X
    Opt Express; 2016 May; 24(9):9288-94. PubMed ID: 27137544
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polarization-independent absorption enhancement in a graphene square array with a cascaded grating structure.
    Wu J
    J Synchrotron Radiat; 2018 Mar; 25(Pt 2):419-424. PubMed ID: 29488921
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis of tunable-band-gap "Open-Box" halide perovskites by use of anion exchange and internal dissolution procedures.
    Wu Z; Wang B; He J; Chen T
    J Colloid Interface Sci; 2016 Jan; 461():162-167. PubMed ID: 26397923
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Steric engineering of metal-halide perovskites with tunable optical band gaps.
    Filip MR; Eperon GE; Snaith HJ; Giustino F
    Nat Commun; 2014 Dec; 5():5757. PubMed ID: 25502506
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Graphene-based tunable ultra-narrowband mid-infrared TE-polarization absorber.
    Liao YL; Zhao Y
    Opt Express; 2017 Dec; 25(25):32080-32089. PubMed ID: 29245873
    [TBL] [Abstract][Full Text] [Related]  

  • 39. (CH3NH3)2Pb(SCN)2I2: a more stable structural motif for hybrid halide photovoltaics?
    Ganose AM; Savory CN; Scanlon DO
    J Phys Chem Lett; 2015 Nov; 6(22):4594-8. PubMed ID: 26525942
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Near-infrared absorption-induced switching effect via guided mode resonances in a graphene-based metamaterial.
    Qing YM; Ma HF; Ren YZ; Yu S; Cui TJ
    Opt Express; 2019 Feb; 27(4):5253-5263. PubMed ID: 30876126
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.