These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 32403924)

  • 1. Pressure Induced Wetting and Dewetting of the Nonpolar Pocket of Deep-Cavity Cavitands in Water.
    Tang D; Dwyer T; Bukannan H; Blackmon O; Delpo C; Barnett JW; Gibb BC; Ashbaugh HS
    J Phys Chem B; 2020 Jun; 124(23):4781-4792. PubMed ID: 32403924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous drying of non-polar deep-cavity cavitand pockets in aqueous solution.
    Barnett JW; Sullivan MR; Long JA; Tang D; Nguyen T; Ben-Amotz D; Gibb BC; Ashbaugh HS
    Nat Chem; 2020 Jul; 12(7):589-594. PubMed ID: 32424255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Guest Controlled Nonmonotonic Deep Cavity Cavitand Assembly State Switching.
    Tang D; Barnett JW; Gibb BC; Ashbaugh HS
    J Phys Chem B; 2017 Nov; 121(47):10717-10725. PubMed ID: 29099596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation optimization of spherical non-polar guest recognition by deep-cavity cavitands.
    Wanjari PP; Gibb BC; Ashbaugh HS
    J Chem Phys; 2013 Dec; 139(23):234502. PubMed ID: 24359375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cavitand Complexes in Aqueous Solution: Collaborative Experimental and Computational Studies of the Wetting, Assembly, and Function of Nanoscopic Bowls in Water.
    Ashbaugh HS; Gibb BC; Suating P
    J Phys Chem B; 2021 Apr; 125(13):3253-3268. PubMed ID: 33651614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dewetting-controlled binding of ligands to hydrophobic pockets.
    Setny P; Wang Z; Cheng LT; Li B; McCammon JA; Dzubiella J
    Phys Rev Lett; 2009 Oct; 103(18):187801. PubMed ID: 19905832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diastereoselective formation of host-guest complexes between a series of phosphate-bridged cavitands and alkyl- and arylammonium ions studied by liquid secondary-ion mass spectrometry.
    Irico A; Vincenti M; Dalcanale E
    Chemistry; 2001 May; 7(9):2034-42. PubMed ID: 11405483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using Metadynamics To Explore the Free Energy of Dewetting in Biologically Relevant Nanopores.
    Nordquist EB; Schultz SA; Chen J
    J Phys Chem B; 2022 Sep; 126(34):6428-6437. PubMed ID: 35998613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the Nature of Guest Complexation in Water: Triggered Wetting-Water-Mediated Binding.
    Suating P; Ernst NE; Alagbe BD; Skinner HA; Mague JT; Ashbaugh HS; Gibb BC
    J Phys Chem B; 2022 Apr; 126(16):3150-3160. PubMed ID: 35438501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold nanoparticles functionalized with deep-cavity cavitands: synthesis, characterization, and photophysical studies.
    Samanta SR; Kulasekharan R; Choudhury R; Jagadesan P; Jayaraj N; Ramamurthy V
    Langmuir; 2012 Aug; 28(32):11920-8. PubMed ID: 22809255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gas chromatographic separation of isotopic molecules using a cavitand-impregnated ionic liquid stationary phase.
    Tran CD; Mejac I; Rebek J; Hooley RJ
    Anal Chem; 2009 Feb; 81(3):1244-54. PubMed ID: 19178344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding of carboxylate and trimethylammonium salts to octa-acid and TEMOA deep-cavity cavitands.
    Sullivan MR; Sokkalingam P; Nguyen T; Donahue JP; Gibb BC
    J Comput Aided Mol Des; 2017 Jan; 31(1):21-28. PubMed ID: 27432339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wetting-dewetting films: the role of structural forces.
    Nikolov A; Wasan D
    Adv Colloid Interface Sci; 2014 Apr; 206():207-21. PubMed ID: 24035126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvation thermodynamics of amino acid side chains on a short peptide backbone.
    Hajari T; van der Vegt NF
    J Chem Phys; 2015 Apr; 142(14):144502. PubMed ID: 25877585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adjusting the binding thermodynamics, kinetics, and orientation of guests within large synthetic hydrophobic pockets.
    Gibb CL; Li X; Gibb BC
    Proc Natl Acad Sci U S A; 2002 Apr; 99(8):4857-62. PubMed ID: 11959937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unraveling water's entropic mysteries: a unified view of nonpolar, polar, and ionic hydration.
    Ben-Amotz D; Underwood R
    Acc Chem Res; 2008 Aug; 41(8):957-67. PubMed ID: 18710198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the Role of Dewetting Transitions in Host-Guest Binding Free Energy Calculations.
    Rogers KE; Ortiz-Sánchez JM; Baron R; Fajer M; de Oliveira CA; McCammon JA
    J Chem Theory Comput; 2013 Jan; 9(1):46-53. PubMed ID: 23316123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rigidified Cavitand Hosts in Water: Bent Guests, Shape Selectivity, and Encapsulation.
    Yang JM; Chen YQ; Yu Y; Ballester P; Rebek J
    J Am Chem Soc; 2021 Nov; 143(46):19517-19524. PubMed ID: 34762414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanomechanical recognition of N-methylammonium salts.
    Dionisio M; Oliviero G; Menozzi D; Federici S; Yebeutchou RM; Schmidtchen FP; Dalcanale E; Bergese P
    J Am Chem Soc; 2012 Feb; 134(4):2392-8. PubMed ID: 22239344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of retention mechanism of resorcinarene based cavitands by linear and nonlinear chromatography.
    Bartó E; Prauda I; Kilár F; Kiss I; Felinger A
    J Chromatogr A; 2016 Jul; 1456():152-61. PubMed ID: 27317005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.