These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Ju B; Zhang Q; Ge J; Wang R; Sun J; Ge X; Yu J; Shan S; Zhou B; Song S; Tang X; Yu J; Lan J; Yuan J; Wang H; Zhao J; Zhang S; Wang Y; Shi X; Liu L; Zhao J; Wang X; Zhang Z; Zhang L Nature; 2020 Aug; 584(7819):115-119. PubMed ID: 32454513 [TBL] [Abstract][Full Text] [Related]
7. Analysis of a SARS-CoV-2-Infected Individual Reveals Development of Potent Neutralizing Antibodies with Limited Somatic Mutation. Seydoux E; Homad LJ; MacCamy AJ; Parks KR; Hurlburt NK; Jennewein MF; Akins NR; Stuart AB; Wan YH; Feng J; Whaley RE; Singh S; Boeckh M; Cohen KW; McElrath MJ; Englund JA; Chu HY; Pancera M; McGuire AT; Stamatatos L Immunity; 2020 Jul; 53(1):98-105.e5. PubMed ID: 32561270 [TBL] [Abstract][Full Text] [Related]
8. Blocking of the High-Affinity Interaction-Synapse Between SARS-CoV-2 Spike and Human ACE2 Proteins Likely Requires Multiple High-Affinity Antibodies: An Immune Perspective. Khatri I; Staal FJT; van Dongen JJM Front Immunol; 2020; 11():570018. PubMed ID: 33042151 [TBL] [Abstract][Full Text] [Related]
9. Optimized Pseudotyping Conditions for the SARS-COV-2 Spike Glycoprotein. Johnson MC; Lyddon TD; Suarez R; Salcedo B; LePique M; Graham M; Ricana C; Robinson C; Ritter DG J Virol; 2020 Oct; 94(21):. PubMed ID: 32788194 [TBL] [Abstract][Full Text] [Related]
10. Humanized COVID-19 decoy antibody effectively blocks viral entry and prevents SARS-CoV-2 infection. Huang KY; Lin MS; Kuo TC; Chen CL; Lin CC; Chou YC; Chao TL; Pang YH; Kao HC; Huang RS; Lin S; Chang SY; Yang PC EMBO Mol Med; 2021 Jan; 13(1):e12828. PubMed ID: 33159417 [TBL] [Abstract][Full Text] [Related]
11. Structural Basis for Potent Neutralization of Betacoronaviruses by Single-Domain Camelid Antibodies. Wrapp D; De Vlieger D; Corbett KS; Torres GM; Wang N; Van Breedam W; Roose K; van Schie L; ; Hoffmann M; Pöhlmann S; Graham BS; Callewaert N; Schepens B; Saelens X; McLellan JS Cell; 2020 May; 181(5):1004-1015.e15. PubMed ID: 32375025 [TBL] [Abstract][Full Text] [Related]
12. A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Chi X; Yan R; Zhang J; Zhang G; Zhang Y; Hao M; Zhang Z; Fan P; Dong Y; Yang Y; Chen Z; Guo Y; Zhang J; Li Y; Song X; Chen Y; Xia L; Fu L; Hou L; Xu J; Yu C; Li J; Zhou Q; Chen W Science; 2020 Aug; 369(6504):650-655. PubMed ID: 32571838 [TBL] [Abstract][Full Text] [Related]
13. Computational Alanine Scanning and Structural Analysis of the SARS-CoV-2 Spike Protein/Angiotensin-Converting Enzyme 2 Complex. Laurini E; Marson D; Aulic S; Fermeglia M; Pricl S ACS Nano; 2020 Sep; 14(9):11821-11830. PubMed ID: 32833435 [TBL] [Abstract][Full Text] [Related]
14. Perspectives on development of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Zhang C; Zhou C; Shi L; Liu G Hum Vaccin Immunother; 2020 Oct; 16(10):2366-2369. PubMed ID: 32961082 [TBL] [Abstract][Full Text] [Related]
15. A novel rapid detection for SARS-CoV-2 spike 1 antigens using human angiotensin converting enzyme 2 (ACE2). Lee JH; Choi M; Jung Y; Lee SK; Lee CS; Kim J; Kim J; Kim NH; Kim BT; Kim HG Biosens Bioelectron; 2021 Jan; 171():112715. PubMed ID: 33099241 [TBL] [Abstract][Full Text] [Related]
16. Structural basis for potent neutralization of SARS-CoV-2 and role of antibody affinity maturation. Hurlburt NK; Seydoux E; Wan YH; Edara VV; Stuart AB; Feng J; Suthar MS; McGuire AT; Stamatatos L; Pancera M Nat Commun; 2020 Oct; 11(1):5413. PubMed ID: 33110068 [TBL] [Abstract][Full Text] [Related]
17. A potent bispecific nanobody protects hACE2 mice against SARS-CoV-2 infection via intranasal administration. Wu X; Cheng L; Fu M; Huang B; Zhu L; Xu S; Shi H; Zhang D; Yuan H; Nawaz W; Yang P; Hu Q; Liu Y; Wu Z Cell Rep; 2021 Oct; 37(3):109869. PubMed ID: 34644535 [TBL] [Abstract][Full Text] [Related]
18. A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Shi R; Shan C; Duan X; Chen Z; Liu P; Song J; Song T; Bi X; Han C; Wu L; Gao G; Hu X; Zhang Y; Tong Z; Huang W; Liu WJ; Wu G; Zhang B; Wang L; Qi J; Feng H; Wang FS; Wang Q; Gao GF; Yuan Z; Yan J Nature; 2020 Aug; 584(7819):120-124. PubMed ID: 32454512 [TBL] [Abstract][Full Text] [Related]
19. In silico study of azithromycin, chloroquine and hydroxychloroquine and their potential mechanisms of action against SARS-CoV-2 infection. Braz HLB; Silveira JAM; Marinho AD; de Moraes MEA; Moraes Filho MO; Monteiro HSA; Jorge RJB Int J Antimicrob Agents; 2020 Sep; 56(3):106119. PubMed ID: 32738306 [TBL] [Abstract][Full Text] [Related]
20. Rapid production of SARS-CoV-2 receptor binding domain (RBD) and spike specific monoclonal antibody CR3022 in Nicotiana benthamiana. Rattanapisit K; Shanmugaraj B; Manopwisedjaroen S; Purwono PB; Siriwattananon K; Khorattanakulchai N; Hanittinan O; Boonyayothin W; Thitithanyanont A; Smith DR; Phoolcharoen W Sci Rep; 2020 Oct; 10(1):17698. PubMed ID: 33077899 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]