BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 32404013)

  • 1. DNA sequence, physics, and promoter function: Analysis of high-throughput data On T7 promoter variants activity.
    Orlov MA; Sorokin AA
    J Bioinform Comput Biol; 2020 Apr; 18(2):2040001. PubMed ID: 32404013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discrimination between bacteriophage T3 and T7 promoters by the T3 and T7 RNA polymerases depends primarily upon a three base-pair region located 10 to 12 base-pairs upstream from the start site.
    Klement JF; Moorefield MB; Jorgensen E; Brown JE; Risman S; McAllister WT
    J Mol Biol; 1990 Sep; 215(1):21-9. PubMed ID: 2204706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extended upstream A-T sequence increases T7 promoter strength.
    Tang GQ; Bandwar RP; Patel SS
    J Biol Chem; 2005 Dec; 280(49):40707-13. PubMed ID: 16215231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relative efficiency of utilization of promoter and termination sites by bacteriophage T3 RNA polymerase.
    Sengupta D; Chakravarti D; Maitra U
    J Biol Chem; 1989 Aug; 264(24):14246-55. PubMed ID: 2547791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substitution of a single bacteriophage T3 residue in bacteriophage T7 RNA polymerase at position 748 results in a switch in promoter specificity.
    Raskin CA; Diaz G; Joho K; McAllister WT
    J Mol Biol; 1992 Nov; 228(2):506-15. PubMed ID: 1453460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the interaction of T7 RNA polymerase with promoter.
    Sastry S; Ross BM
    Biochemistry; 1999 Apr; 38(16):4972-81. PubMed ID: 10213599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a region of the bacteriophage T3 and T7 RNA polymerases that determines promoter specificity.
    Joho KE; Gross LB; McGraw NJ; Raskin C; McAllister WT
    J Mol Biol; 1990 Sep; 215(1):31-9. PubMed ID: 2204707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Weakening of the T7 promoter-polymerase interaction facilitates promoter release.
    Guo Q; Sousa R
    J Biol Chem; 2005 Apr; 280(15):14956-61. PubMed ID: 15711016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential scanning calorimetric approach to study the effect of melting region upon transcription initiation by T7 RNA polymerase and role of high affinity GTP binding.
    Pal S; Dasgupta D
    J Biomol Struct Dyn; 2013 Mar; 31(3):288-98. PubMed ID: 22831176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between promoter structure and template specificities exhibited by the bacteriophage T3 and T7 RNA polymerases.
    Bailey JN; Klement JF; McAllister WT
    Proc Natl Acad Sci U S A; 1983 May; 80(10):2814-8. PubMed ID: 6574450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A promoter recognition mechanism common to yeast mitochondrial and phage t7 RNA polymerases.
    Nayak D; Guo Q; Sousa R
    J Biol Chem; 2009 May; 284(20):13641-13647. PubMed ID: 19307179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of substitutions in a conserved DX(2)GR sequence motif, found in many DNA-dependent nucleotide polymerases, on transcription by T7 RNA polymerase.
    Imburgio D; Anikin M; McAllister WT
    J Mol Biol; 2002 May; 319(1):37-51. PubMed ID: 12051935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrostatic map of T7 DNA: comparative analysis of functional and electrostatic properties of T7 RNA polymerase-specific promoters.
    Kamzolova SG; Beskaravainy PM; Osypov AA; Dzhelyadin TR; Temlyakova EA; Sorokin AA
    J Biomol Struct Dyn; 2014; 32(8):1184-92. PubMed ID: 23895582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of promoter recognition and start site selection by T7 RNA polymerase using a comprehensive collection of promoter variants.
    Imburgio D; Rong M; Ma K; McAllister WT
    Biochemistry; 2000 Aug; 39(34):10419-30. PubMed ID: 10956032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two base pairs at -9 and -8 distinguish between the bacteriophage T7 and SP6 promoters.
    Lee SS; Kang C
    J Biol Chem; 1993 Sep; 268(26):19299-304. PubMed ID: 8366080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Promoter specificity determinants of T7 RNA polymerase.
    Rong M; He B; McAllister WT; Durbin RK
    Proc Natl Acad Sci U S A; 1998 Jan; 95(2):515-9. PubMed ID: 9435223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Evolutionary/Biochemical Connection between Promoter- and Primer-Dependent Polymerases Revealed by Systematic Evolution of Ligands by Exponential Enrichment.
    Fenstermacher KJ; Achuthan V; Schneider TD; DeStefano JJ
    J Bacteriol; 2018 Apr; 200(7):. PubMed ID: 29339418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A combined in vitro/in vivo selection for polymerases with novel promoter specificities.
    Chelliserrykattil J; Cai G; Ellington AD
    BMC Biotechnol; 2001; 1():13. PubMed ID: 11806761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mutant T7 RNA polymerase that is defective in RNA binding and blocked in the early stages of transcription.
    He B; Rong M; Durbin RK; McAllister WT
    J Mol Biol; 1997 Jan; 265(3):275-88. PubMed ID: 9018042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Promoter Length Affects the Initiation of T7 RNA Polymerase In Vitro: New Insights into Promoter/Polymerase Co-evolution.
    Padmanabhan R; Sarcar SN; Miller DL
    J Mol Evol; 2020 Mar; 88(2):179-193. PubMed ID: 31863129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.