BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 32404101)

  • 1. Integrated small RNA and mRNA expression profiles reveal miRNAs and their target genes in response to Aspergillus flavus growth in peanut seeds.
    Zhao C; Li T; Zhao Y; Zhang B; Li A; Zhao S; Hou L; Xia H; Fan S; Qiu J; Li P; Zhang Y; Guo B; Wang X
    BMC Plant Biol; 2020 May; 20(1):215. PubMed ID: 32404101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insight into Genes Regulating Postharvest Aflatoxin Contamination of Tetraploid Peanut from Transcriptional Profiling.
    Korani W; Chu Y; Holbrook CC; Ozias-Akins P
    Genetics; 2018 May; 209(1):143-156. PubMed ID: 29545468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative transcript profiling of resistant and susceptible peanut post-harvest seeds in response to aflatoxin production by Aspergillus flavus.
    Wang H; Lei Y; Wan L; Yan L; Lv J; Dai X; Ren X; Guo W; Jiang H; Liao B
    BMC Plant Biol; 2016 Feb; 16():54. PubMed ID: 26922489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of seed proteins associated with resistance to pre-harvested aflatoxin contamination in peanut (Arachis hypogaea L).
    Wang T; Zhang E; Chen X; Li L; Liang X
    BMC Plant Biol; 2010 Nov; 10():267. PubMed ID: 21118527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peanut gene expression profiling in developing seeds at different reproduction stages during Aspergillus parasiticus infection.
    Guo B; Chen X; Dang P; Scully BT; Liang X; Holbrook CC; Yu J; Culbreath AK
    BMC Dev Biol; 2008 Feb; 8():12. PubMed ID: 18248674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small RNA profiling and degradome analysis reveal regulation of microRNA in peanut embryogenesis and early pod development.
    Gao C; Wang P; Zhao S; Zhao C; Xia H; Hou L; Ju Z; Zhang Y; Li C; Wang X
    BMC Genomics; 2017 Mar; 18(1):220. PubMed ID: 28253861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional Genomic Analysis of Aspergillus flavus Interacting with Resistant and Susceptible Peanut.
    Wang H; Lei Y; Yan L; Wan L; Ren X; Chen S; Dai X; Guo W; Jiang H; Liao B
    Toxins (Basel); 2016 Feb; 8(2):46. PubMed ID: 26891328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mining, identification and function analysis of microRNAs and target genes in peanut (Arachis hypogaea L.).
    Zhang T; Hu S; Yan C; Li C; Zhao X; Wan S; Shan S
    Plant Physiol Biochem; 2017 Feb; 111():85-96. PubMed ID: 27915176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptomic and Metabolomic Analyses of the Response of Resistant Peanut Seeds to
    Wang Y; Liu D; Yin H; Wang H; Cao C; Wang J; Zheng J; Liu J
    Toxins (Basel); 2023 Jun; 15(7):. PubMed ID: 37505683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated microRNA and transcriptome profiling reveals a miRNA-mediated regulatory network of embryo abortion under calcium deficiency in peanut (Arachis hypogaea L.).
    Chen H; Yang Q; Chen K; Zhao S; Zhang C; Pan R; Cai T; Deng Y; Wang X; Chen Y; Chu W; Xie W; Zhuang W
    BMC Genomics; 2019 May; 20(1):392. PubMed ID: 31113378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genotypic Regulation of Aflatoxin Accumulation but Not Aspergillus Fungal Growth upon Post-Harvest Infection of Peanut (Arachis hypogaea L.) Seeds.
    Korani WA; Chu Y; Holbrook C; Clevenger J; Ozias-Akins P
    Toxins (Basel); 2017 Jul; 9(7):. PubMed ID: 28704974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene expression profiling and identification of resistance genes to Aspergillus flavus infection in peanut through EST and microarray strategies.
    Guo B; Fedorova ND; Chen X; Wan CH; Wang W; Nierman WC; Bhatnagar D; Yu J
    Toxins (Basel); 2011 Jul; 3(7):737-53. PubMed ID: 22069737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of Small RNA and Degradome Sequencing Reveals the Regulatory Network of Al-Induced Programmed Cell Death in Peanut.
    Tong B; Shi Y; Ntambiyukuri A; Li X; Zhan J; Wang A; Xiao D; He L
    Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immune response gene coexpression network analysis of Arachis hypogaea infected with Aspergillus flavus.
    Jayaprakash A; Roy A; Thanmalagan RR; Arunachalam A; Ptv L
    Genomics; 2021 Sep; 113(5):2977-2988. PubMed ID: 34153499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution and characterisation of the AhRAF4 NB-ARC gene family induced by Aspergillus flavus inoculation and abiotic stresses in peanut.
    Deng Y; Chen H; Zhang C; Cai T; Zhang B; Zhou S; Fountain JC; Pan RL; Guo B; Zhuang WJ
    Plant Biol (Stuttg); 2018 Jul; 20(4):737-750. PubMed ID: 29603544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of small RNA populations in non-transgenic and aflatoxin-reducing-transformed peanut.
    Power IL; Dang PM; Sobolev VS; Orner VA; Powell JL; Lamb MC; Arias RS
    Plant Sci; 2017 Apr; 257():106-125. PubMed ID: 28224915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated analyses reveal the response of peanut to phosphorus deficiency on phenotype, transcriptome and metabolome.
    Wu Q; Yang L; Liang H; Yin L; Chen D; Shen P
    BMC Plant Biol; 2022 Nov; 22(1):524. PubMed ID: 36372886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptome identification of the resistance-associated genes (RAGs) to Aspergillus flavus infection in pre-harvested peanut (Arachis hypogaea).
    Wang T; Chen XP; Li HF; Liu HY; Hong YB; Yang QL; Chi XY; Yang Z; Yu SL; Li L; Liang XQ
    Funct Plant Biol; 2013 Apr; 40(3):292-303. PubMed ID: 32481108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppression of Aflatoxin Biosynthesis in Aspergillus flavus by 2-Phenylethanol Is Associated with Stimulated Growth and Decreased Degradation of Branched-Chain Amino Acids.
    Chang PK; Hua SS; Sarreal SB; Li RW
    Toxins (Basel); 2015 Sep; 7(10):3887-902. PubMed ID: 26404375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated microRNA and transcriptome profiling reveal key miRNA-mRNA interaction pairs associated with seed development in Tartary buckwheat (Fagopyrum tataricum).
    Li H; Meng H; Sun X; Deng J; Shi T; Zhu L; Lv Q; Chen Q
    BMC Plant Biol; 2021 Mar; 21(1):132. PubMed ID: 33750309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.