BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

743 related articles for article (PubMed ID: 32404174)

  • 1. Exploiting upper-limb functional principal components for human-like motion generation of anthropomorphic robots.
    Averta G; Della Santina C; Valenza G; Bicchi A; Bianchi M
    J Neuroeng Rehabil; 2020 May; 17(1):63. PubMed ID: 32404174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anthropomorphic Reaching Movement Generating Method for Human-Like Upper Limb Robot.
    He C; Xu XW; Zheng XF; Xiong CH; Li QL; Chen WB; Sun BY
    IEEE Trans Cybern; 2022 Dec; 52(12):13225-13236. PubMed ID: 34662283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robotic gaming prototype for upper limb exercise: Effects of age and embodiment on user preferences and movement.
    Eizicovits D; Edan Y; Tabak I; Levy-Tzedek S
    Restor Neurol Neurosci; 2018; 36(2):261-274. PubMed ID: 29526862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patient's Healthy-Limb Motion Characteristic-Based Assist-As-Needed Control Strategy for Upper-Limb Rehabilitation Robots.
    Guo B; Li Z; Huang M; Li X; Han J
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices.
    Bertomeu-Motos A; Blanco A; Badesa FJ; Barios JA; Zollo L; Garcia-Aracil N
    J Neuroeng Rehabil; 2018 Feb; 15(1):10. PubMed ID: 29458397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and verification of a human-robot interaction system for upper limb exoskeleton rehabilitation.
    Wendong W; Hanhao L; Menghan X; Yang C; Xiaoqing Y; Xing M; Bing Z
    Med Eng Phys; 2020 May; 79():19-25. PubMed ID: 32205023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-powered robots to reduce motor slacking during upper-extremity rehabilitation: a proof of concept study.
    Washabaugh EP; Treadway E; Gillespie RB; Remy CD; Krishnan C
    Restor Neurol Neurosci; 2018; 36(6):693-708. PubMed ID: 30400120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke.
    Babaiasl M; Mahdioun SH; Jaryani P; Yazdani M
    Disabil Rehabil Assist Technol; 2016; 11(4):263-80. PubMed ID: 25600057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and analysis of a compatible exoskeleton rehabilitation robot system based on upper limb movement mechanism.
    Ning Y; Wang H; Liu Y; Wang Q; Rong Y; Niu J
    Med Biol Eng Comput; 2024 Mar; 62(3):883-899. PubMed ID: 38081953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An upper-limb power-assist robot with tremor suppression control.
    Kiguchi K; Hayashi Y; Asami T
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975390. PubMed ID: 22275594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning-Based Motion-Intention Prediction for End-Point Control of Upper-Limb-Assistive Robots.
    Yang S; Garg NP; Gao R; Yuan M; Noronha B; Ang WT; Accoto D
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bio-inspired upper limb soft exoskeleton to reduce stroke-induced complications.
    Li N; Yang T; Yu P; Chang J; Zhao L; Zhao X; Elhajj IH; Xi N; Liu L
    Bioinspir Biomim; 2018 Aug; 13(6):066001. PubMed ID: 30088477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of robotic assistance on upper limb spatial muscle synergies in healthy people during planar upper-limb training.
    Cancrini A; Baitelli P; Lavit Nicora M; Malosio M; Pedrocchi A; Scano A
    PLoS One; 2022; 17(8):e0272813. PubMed ID: 35939495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intuitive adaptive orientation control of assistive robots for people living with upper limb disabilities.
    Vu DS; Allard UC; Gosselin C; Routhier F; Gosselin B; Campeau-Lecours A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():795-800. PubMed ID: 28813917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An assessment of robot-assisted bimanual movements on upper limb motor coordination following stroke.
    Lewis GN; Perreault EJ
    IEEE Trans Neural Syst Rehabil Eng; 2009 Dec; 17(6):595-604. PubMed ID: 19666342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-protective whole body motion for humanoid robots based on synergy of global reaction and local reflex.
    Shimizu T; Saegusa R; Ikemoto S; Ishiguro H; Metta G
    Neural Netw; 2012 Aug; 32():109-18. PubMed ID: 22377658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexion-extension motion assistance using an upper limb motion-assist robot based on trajectory estimation of reaching movement.
    Yano K; Hashimura J; Aoki T; Nishimoto Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4599-602. PubMed ID: 19963848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive training algorithm for robot-assisted upper-arm rehabilitation, applicable to individualised and therapeutic human-robot interaction.
    Chemuturi R; Amirabdollahian F; Dautenhahn K
    J Neuroeng Rehabil; 2013 Sep; 10():102. PubMed ID: 24073670
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 38.