These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

732 related articles for article (PubMed ID: 32404174)

  • 21. Performance-based robotic assistance during rhythmic arm exercises.
    Leconte P; Ronsse R
    J Neuroeng Rehabil; 2016 Sep; 13(1):82. PubMed ID: 27623806
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Human-robot coupling dynamic modeling and analysis for upper limb rehabilitation robots.
    Xie Q; Meng Q; Dai Y; Zeng Q; Fan Y; Yu H
    Technol Health Care; 2021; 29(4):709-723. PubMed ID: 33386832
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinematic Synergy of Multi-DoF Movement in Upper Limb and Its Application for Rehabilitation Exoskeleton Motion Planning.
    Tang S; Chen L; Barsotti M; Hu L; Li Y; Wu X; Bai L; Frisoli A; Hou W
    Front Neurorobot; 2019; 13():99. PubMed ID: 31849635
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Architectural design and development of an upper-limb rehabilitation device: a modular synthesis approach.
    Gupta S; Agrawal A; Singla E
    Disabil Rehabil Assist Technol; 2024 Jan; 19(1):139-153. PubMed ID: 35549593
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synergy-Based Myocontrol of a Multiple Degree-of-Freedom Humanoid Robot for Functional Tasks.
    Lunardini F; Antonietti A; Casellato C; Pedrocchi A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5108-5112. PubMed ID: 31947008
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Robot training of upper limb in multiple sclerosis: comparing protocols with or without manipulative task components.
    Carpinella I; Cattaneo D; Bertoni R; Ferrarin M
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):351-60. PubMed ID: 22623407
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Collision avoidance analysis of human-robot physical interaction based on null-space impedance control of a dynamic reference arm plane.
    Sun Q; Guo S; Fei S
    Med Biol Eng Comput; 2023 Aug; 61(8):2077-2090. PubMed ID: 37326802
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of exoskeletal gait assistance on the recovery motion following tripping.
    Akiyama Y; Fukui Y; Okamoto S; Yamada Y
    PLoS One; 2020; 15(2):e0229150. PubMed ID: 32092091
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exerciser for rehabilitation of the Arm (ERA): Development and unique features of a 3D end-effector robot.
    Milot MH; Hamel M; Provost PO; Bernier-Ouellet J; Dupuis M; Letourneau D; Briere S; Michaud F
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5833-5836. PubMed ID: 28269581
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exoskeleton and End-Effector Robots for Upper and Lower Limbs Rehabilitation: Narrative Review.
    Molteni F; Gasperini G; Cannaviello G; Guanziroli E
    PM R; 2018 Sep; 10(9 Suppl 2):S174-S188. PubMed ID: 30269804
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Methods of Generating Emotional Movements and Methods of Transmitting Behavioral Intentions: A Perspective on Human-Coexistence Robots.
    Matsumaru T
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746365
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multidimensional Capacitive Sensing for Robot-Assisted Dressing and Bathing.
    Erickson Z; Clever HM; Gangaram V; Turk G; Liu CK; Kemp CC
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():224-231. PubMed ID: 31374634
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Voice Control Interface Prototype for Assistive Robots for People Living with Upper Limb Disabilities.
    Poirier S; Routhier F; Campeau-Lecours A
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():46-52. PubMed ID: 31374605
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distributed Pursuit of an Evader With Collision and Obstacle Avoidance.
    Tian B; Li P; Lu H; Zong Q; He L
    IEEE Trans Cybern; 2022 Dec; 52(12):13512-13520. PubMed ID: 34653011
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design, implementation and clinical tests of a wire-based robot for neurorehabilitation.
    Rosati G; Gallina P; Masiero S
    IEEE Trans Neural Syst Rehabil Eng; 2007 Dec; 15(4):560-9. PubMed ID: 18198714
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vision-Based Learning from Demonstration System for Robot Arms.
    Hwang PJ; Hsu CC; Chou PY; Wang WY; Lin CH
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408292
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Control of wearable motion assist robot for upper limb based on the equilibrium position estimation.
    Mizutani N; Yamane M; Kato N; Yano K; Aoki T; Nishimoto Y; Kobayashi Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():334-7. PubMed ID: 24109692
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Robot therapy of the upper limb in stroke patients: preliminary experiences for the principle-based use of this technology.
    Casadio M; Giannoni P; Masia L; Morasso P; Sandini G; Sanguineti V; Squeri V; Vergaro E
    Funct Neurol; 2009; 24(4):195-202. PubMed ID: 20412725
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hybrid Rehabilitation System with Motion Estimation Based on EMG Signals.
    Takenaka K; Shima K; Shimatani K
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941241
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the Time-Invariance Properties of Upper Limb Synergies.
    Averta G; Valenza G; Catrambone V; Barontini F; Scilingo EP; Bicchi A; Bianchi M
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jul; 27(7):1397-1406. PubMed ID: 31135365
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.