These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 32404923)

  • 1. Near-threshold fatigue crack propagation without oxide-induced crack closure.
    Tazoe K; Tanaka H; Oka M; Yagawa G
    Sci Rep; 2020 May; 10(1):7926. PubMed ID: 32404923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of TiB Orientation on Near-Threshold Fatigue Crack Propagation in TiB-Reinforced Ti-3Al-2.5V Matrix Composites Treated with Heat Extrusion.
    Kikuchi S; Tamai S; Kawai T; Nakai Y; Kurita H; Gourdet S
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31717310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust Determination of Fatigue Crack Propagation Thresholds from Crack Growth Data.
    Schönherr JA; Duarte L; Madia M; Zerbst U; Geilen MB; Klein M; Oechsner M
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatigue crack closure: a review of the physical phenomena.
    Pippan R; Hohenwarter A
    Fatigue Fract Eng Mater Struct; 2017 Apr; 40(4):471-495. PubMed ID: 28616624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Underload Cycles on Oxide-Induced Crack Closure Development in Cr-Mo Low-Alloy Steel.
    Pokorný P; Vojtek T; Jambor M; Náhlík L; Hutař P
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34068046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short Fatigue-Crack Growth from Crack-like Defects under Completely Reversed Loading Predicted Based on Cyclic R-Curve.
    Tanaka K; Akiniwa Y
    Materials (Basel); 2024 Sep; 17(18):. PubMed ID: 39336226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of build direction dependent grain structure on fatigue crack growth of biomedical Co-29Cr-6Mo alloy processed by laser powder bed fusion.
    Anuar A; Guraya T; Chen ZW; Ramezani M; San Sebastián-Ormazabal M
    J Mech Behav Biomed Mater; 2021 Nov; 123():104741. PubMed ID: 34461399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of environment on the fatigue crack growth behaviour of 12% Cr steel.
    Schönbauer BM; Stanzl-Tschegg SE
    Ultrasonics; 2013 Dec; 53(8):1399-405. PubMed ID: 23490013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Solution Annealing on Fatigue Crack Propagation in the AISI 304L TRIP Steel.
    Jambor M; Vojtek T; Pokorný P; Šmíd M
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33801909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Specimen Thickness and Stress Intensity Factor Range on Plasticity-Induced Fatigue Crack Closure in A7075-T6 Alloy.
    Masuda K; Ishihara S; Oguma N
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33572686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation on Fatigue Threshold Testing Methods in a Near Lamellar TiAl Alloy.
    Wang S; Li H; Bowen P
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31653069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatigue of tooth-colored restoratives in aqueous environment.
    Kawakami Y; Takeshige F; Hayashi M; Ebisu S
    Dent Mater J; 2007 Jan; 26(1):1-6. PubMed ID: 17410886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Mechanism of Creep during Crack Propagation of a Superalloy under Fatigue-Creep-Environment Interactions.
    Wang M; Du J; Deng Q
    Materials (Basel); 2020 Oct; 13(19):. PubMed ID: 33020419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatigue behavior of resin composites in aqueous environments.
    Takeshige F; Kawakami Y; Hayashi M; Ebisu S
    Dent Mater; 2007 Jul; 23(7):893-9. PubMed ID: 17007919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Threshold intensity factors as lower boundaries for crack propagation in ceramics.
    Marx R; Jungwirth F; Walter PO
    Biomed Eng Online; 2004 Nov; 3(1):41. PubMed ID: 15548323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Fatigue Life Prediction Method Based on Strain Intensity Factor.
    Zhang W; Liu H; Wang Q; He J
    Materials (Basel); 2017 Jun; 10(7):. PubMed ID: 28773049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical Analysis of Fatigue Crack Growth Path and Life Predictions for Linear Elastic Material.
    Alshoaibi AM; Fageehi YA
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32751568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatigue crack propagation behavior of ultra high molecular weight polyethylene under mixed mode conditions.
    Elbert KE; Wright TM; Rimnac CM; Klein RW; Ingraffea AR; Gunsallus K; Bartel DL
    J Biomed Mater Res; 1994 Feb; 28(2):181-7. PubMed ID: 8207029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigative Method for Fatigue Crack Propagation Based on a Small Time Scale.
    Wang H; Zhang W; Zhang J; Dai W; Zhao Y
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29751621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.