BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 32405433)

  • 1. RNA Delivery via DNA-Inspired Janus Base Nanotubes for Extracellular Matrix Penetration.
    Sands I; Lee J; Zhang W; Chen Y
    MRS Adv; 2020; 5(16):815-823. PubMed ID: 32405433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computation-aided Design of Rod-Shaped Janus Base Nanopieces for Improved Tissue Penetration and Therapeutics Delivery.
    Lee J; Zhang W; Nguyen D; Zhou L; Amengual J; Zhai J; Cote T; Landolina M; Ahmadi E; Sands I; Mishra N; Yu H; Nieh MP; Wang K; Li Y; Chen Y
    bioRxiv; 2024 Jan; ():. PubMed ID: 38328235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA-inspired nanomaterials for enhanced endosomal escape.
    Lee J; Sands I; Zhang W; Zhou L; Chen Y
    Proc Natl Acad Sci U S A; 2021 May; 118(19):. PubMed ID: 33941681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembled Janus base nanotubes: chemistry and applications.
    Zhang W; Chen Y
    Front Chem; 2023; 11():1346014. PubMed ID: 38374885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intact vitreous humor as a potential extracellular matrix hydrogel for cartilage tissue engineering applications.
    Lindberg GCJ; Longoni A; Lim KS; Rosenberg AJ; Hooper GJ; Gawlitta D; Woodfield TBF
    Acta Biomater; 2019 Feb; 85():117-130. PubMed ID: 30572166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased nanoparticle penetration in collagenase-treated multicellular spheroids.
    Goodman TT; Olive PL; Pun SH
    Int J Nanomedicine; 2007; 2(2):265-74. PubMed ID: 17722554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preventing Obstructions of Nanosized Drug Delivery Systems by the Extracellular Matrix.
    Tomasetti L; Breunig M
    Adv Healthc Mater; 2018 Feb; 7(3):. PubMed ID: 29121453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Articular cartilage response to a sliding load using two different-sized spherical indenters1.
    Schätti OR; Colombo V; Torzilli PA; Gallo LM
    Biorheology; 2018; 54(2-4):109-126. PubMed ID: 29376845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular matrix remodeling in vivo for enhancing tumor-targeting efficiency of nanoparticle drug carriers using the pulsed high intensity focused ultrasound.
    Lee S; Han H; Koo H; Na JH; Yoon HY; Lee KE; Lee H; Kim H; Kwon IC; Kim K
    J Control Release; 2017 Oct; 263():68-78. PubMed ID: 28257990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silica nano supra-assembly for the targeted delivery of therapeutic cargo to overcome chemoresistance in cancer.
    Thorat ND; Bauer J; Tofail SAM; Gascón Pérez V; Bohara RA; Yadav HM
    Colloids Surf B Biointerfaces; 2020 Jan; 185():110571. PubMed ID: 31683204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cartilage and bone extracellular matrix.
    Gentili C; Cancedda R
    Curr Pharm Des; 2009; 15(12):1334-48. PubMed ID: 19355972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular matrix content and WNT/β-catenin levels of cartilage determine the chondrocyte response to compressive load.
    Praxenthaler H; Krämer E; Weisser M; Hecht N; Fischer J; Grossner T; Richter W
    Biochim Biophys Acta Mol Basis Dis; 2018 Mar; 1864(3):851-859. PubMed ID: 29277327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of chondrocyte gene expression.
    Hering TM
    Front Biosci; 1999 Oct; 4():D743-61. PubMed ID: 10525476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cancer Cell Membrane-Camouflaged Nanorods with Endoplasmic Reticulum Targeting for Improved Antitumor Therapy.
    Zhang W; Yu M; Xi Z; Nie D; Dai Z; Wang J; Qian K; Weng H; Gan Y; Xu L
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):46614-46625. PubMed ID: 31747243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chondrogenic response in presence of cartilage extracellular matrix nanoparticles.
    Zahiri S; Masaeli E; Poorazizi E; Nasr-Esfahani MH
    J Biomed Mater Res A; 2018 Sep; 106(9):2463-2471. PubMed ID: 29664223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and Characterization of RNA Nanotubes.
    Stewart JM; Geary C; Franco E
    ACS Nano; 2019 May; 13(5):5214-5221. PubMed ID: 31007017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of mutations of cartilage matrix genes on matrix structure, gene activity and chondrogenesis.
    So CL; Kaluarachchi K; Tam PP; Cheah KS
    Osteoarthritis Cartilage; 2001; 9 Suppl A():S160-73. PubMed ID: 11680681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cartilaginous extracellular matrix derived from decellularized chondrocyte sheets for the reconstruction of osteochondral defects in rabbits.
    Wang Z; Li Z; Li Z; Wu B; Liu Y; Wu W
    Acta Biomater; 2018 Nov; 81():129-145. PubMed ID: 30300711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autonomously Propelled Colloids for Penetration and Payload Delivery in Complex Extracellular Matrices.
    Singh S; Moran JL
    Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A platform for actively loading cargo RNA to elucidate limiting steps in EV-mediated delivery.
    Hung ME; Leonard JN
    J Extracell Vesicles; 2016; 5():31027. PubMed ID: 27189348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.