BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 32405456)

  • 1. Evaluation of Fluence Correction Algorithms in Multispectral Photoacoustic Imaging.
    Zhou X; Akhlaghi N; Wear KA; Garra BS; Pfefer TJ; Vogt WC
    Photoacoustics; 2020 Sep; 19():100181. PubMed ID: 32405456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a blood oxygenation phantom for photoacoustic tomography combined with online pO2 detection and flow spectrometry.
    Gehrung M; Bohndiek SE; Brunker J
    J Biomed Opt; 2019 Oct; 24(12):1-11. PubMed ID: 31625321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoacoustic oximetry imaging performance evaluation using dynamic blood flow phantoms with tunable oxygen saturation.
    Vogt WC; Zhou X; Andriani R; Wear KA; Pfefer TJ; Garra BS
    Biomed Opt Express; 2019 Feb; 10(2):449-464. PubMed ID: 30800492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable blood oxygenation in the vascular anatomy of a semi-anthropomorphic photoacoustic breast phantom.
    Dantuma M; Kruitwagen S; Ortega-Julia J; Pompe van Meerdervoort RP; Manohar S
    J Biomed Opt; 2021 Mar; 26(3):. PubMed ID: 33728828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of skin tone on photoacoustic imaging and oximetry.
    Else TR; Hacker L; Gröhl J; Bunce EV; Tao R; Bohndiek SE
    J Biomed Opt; 2024 Jan; 29(Suppl 1):S11506. PubMed ID: 38125716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Vitro and In Vivo Multispectral Photoacoustic Imaging for the Evaluation of Chromophore Concentration.
    Dolet A; Ammanouil R; Petrilli V; Richard C; Tortoli P; Vray D; Varray F
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34066263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model-based optical and acoustical compensation for photoacoustic tomography of heterogeneous mediums.
    Pattyn A; Mumm Z; Alijabbari N; Duric N; Anastasio MA; Mehrmohammadi M
    Photoacoustics; 2021 Sep; 23():100275. PubMed ID: 34094852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo study of the depth-dependent fluence perturbation in parallel-plate ionization chambers in electron beams.
    Zink K; Czarnecki D; Looe HK; von Voigts-Rhetz P; Harder D
    Med Phys; 2014 Nov; 41(11):111707. PubMed ID: 25370621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluence-matching technique using photoacoustic radiofrequency spectra for improving estimates of oxygen saturation.
    Fadhel MN; Hysi E; Assi H; Kolios MC
    Photoacoustics; 2020 Sep; 19():100182. PubMed ID: 32547922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple illumination learned spectral decoloring for quantitative optoacoustic oximetry imaging.
    Kirchner T; Frenz M
    J Biomed Opt; 2021 Aug; 26(8):. PubMed ID: 34350736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative PA tomography of high resolution 3-D images: Experimental validation in a tissue phantom.
    Buchmann J; Kaplan B; Powell S; Prohaska S; Laufer J
    Photoacoustics; 2020 Mar; 17():100157. PubMed ID: 31956487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Fluence-Compensated Functional Photoacoustic Microscopy.
    Zhu J; Liu C; Liu Y; Chen J; Zhang Y; Yao K; Wang L
    IEEE Trans Med Imaging; 2021 Dec; 40(12):3856-3866. PubMed ID: 34310295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Moving Beyond Simulation: Data-Driven Quantitative Photoacoustic Imaging Using Tissue-Mimicking Phantoms.
    Grohl J; Else TR; Hacker L; Bunce EV; Sweeney PW; Bohndiek SE
    IEEE Trans Med Imaging; 2024 Mar; 43(3):1214-1224. PubMed ID: 37938947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Automatic Unmixing Approach to Detect Tissue Chromophores from Multispectral Photoacoustic Imaging.
    Grasso V; Holthof J; Jose J
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32517204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phantoms for evaluating the impact of skin pigmentation on photoacoustic imaging and oximetry performance.
    Vogt WC; Wear KA; Pfefer TJ
    Biomed Opt Express; 2023 Nov; 14(11):5735-5748. PubMed ID: 38021140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluence correction factors for graphite calorimetry in a low-energy clinical proton beam: I. Analytical and Monte Carlo simulations.
    Palmans H; Al-Sulaiti L; Andreo P; Shipley D; Lühr A; Bassler N; Martinkovič J; Dobrovodský J; Rossomme S; Thomas RA; Kacperek A
    Phys Med Biol; 2013 May; 58(10):3481-99. PubMed ID: 23629423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental and Monte Carlo studies of fluence corrections for graphite calorimetry in low- and high-energy clinical proton beams.
    Lourenço A; Thomas R; Bouchard H; Kacperek A; Vondracek V; Royle G; Palmans H
    Med Phys; 2016 Jul; 43(7):4122. PubMed ID: 27370132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photon scatter in portal images: accuracy of a fluence based pencil beam superposition algorithm.
    McCurdy BM; Pistorius S
    Med Phys; 2000 May; 27(5):913-22. PubMed ID: 10841394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scatter Correction with Combined Single-Scatter Simulation and Monte Carlo Simulation Scaling Improved the Visual Artifacts and Quantification in 3-Dimensional Brain PET/CT Imaging with
    Magota K; Shiga T; Asano Y; Shinyama D; Ye J; Perkins AE; Maniawski PJ; Toyonaga T; Kobayashi K; Hirata K; Katoh C; Hattori N; Tamaki N
    J Nucl Med; 2017 Dec; 58(12):2020-2025. PubMed ID: 28646012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of 3D Monte Carlo-based scatter correction for 201Tl cardiac perfusion SPECT.
    Xiao J; de Wit TC; Zbijewski W; Staelens SG; Beekman FJ
    J Nucl Med; 2007 Apr; 48(4):637-44. PubMed ID: 17401103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.