BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 32405730)

  • 1. Comparison of the performance of six stimulus paradigms in visual acuity assessment based on steady-state visual evoked potentials.
    Zheng X; Xu G; Wu Y; Wang Y; Du C; Wu Y; Zhang S; Han C
    Doc Ophthalmol; 2020 Dec; 141(3):237-251. PubMed ID: 32405730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anti-fatigue Performance in SSVEP-Based Visual Acuity Assessment: A Comparison of Six Stimulus Paradigms.
    Zheng X; Xu G; Zhang Y; Liang R; Zhang K; Du Y; Xie J; Zhang S
    Front Hum Neurosci; 2020; 14():301. PubMed ID: 32848675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does Oblique Effect Affect SSVEP-Based Visual Acuity Assessment?
    Zheng X; Xu G; Du Y; Li H; Han C; Tian P; Li Z; Du C; Yan W; Zhang S
    Front Neurosci; 2021; 15():784888. PubMed ID: 35095398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing Performance of SSVEP-Based Visual Acuity via Spatial Filtering.
    Zheng X; Xu G; Han C; Tian P; Zhang K; Liang R; Jia Y; Yan W; Du C; Zhang S
    Front Neurosci; 2021; 15():716051. PubMed ID: 34489633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time, precise, rapid and objective visual acuity assessment by self-adaptive step SSVEPs.
    Zheng X; Xu G; Du C; Yan W; Tian P; Zhang K; Liang R; Han C; Zhang S
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33887707
    [No Abstract]   [Full Text] [Related]  

  • 6. Enhancing Performance of Single-Channel SSVEP-Based Visual Acuity Assessment via Mode Decomposition.
    Zheng X; Zhang X; Xu G; Zhang R
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4203-4210. PubMed ID: 37812551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Objective and quantitative assessment of visual acuity and contrast sensitivity based on steady-state motion visual evoked potentials using concentric-ring paradigm.
    Zheng X; Xu G; Wang Y; Han C; Du C; Yan W; Zhang S; Liang R
    Doc Ophthalmol; 2019 Oct; 139(2):123-136. PubMed ID: 31214918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of the performance of three visual evoked potential-based methods to estimate visual acuity.
    Kurtenbach A; Langrová H; Messias A; Zrenner E; Jägle H
    Doc Ophthalmol; 2013 Feb; 126(1):45-56. PubMed ID: 23143759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual evoked potential-based acuity assessment: overestimation in amblyopia.
    Wenner Y; Heinrich SP; Beisse C; Fuchs A; Bach M
    Doc Ophthalmol; 2014 Jun; 128(3):191-200. PubMed ID: 24623357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.
    Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J
    Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of stimulation frequency and stimulation waveform on steady-state visual evoked potentials using a computer monitor.
    Chen X; Wang Y; Zhang S; Xu S; Gao X
    J Neural Eng; 2019 Oct; 16(6):066007. PubMed ID: 31220820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces.
    Chang MH; Baek HJ; Lee SM; Park KS
    Clin Neurophysiol; 2014 Jul; 125(7):1380-91. PubMed ID: 24368034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual evoked cortical potential elicited by pseudoisochromatic stimulus.
    Salomão RC; Martins ICVDS; Risuenho BBO; Guimarães DL; Silveira LCL; Ventura DF; Souza GS
    Doc Ophthalmol; 2019 Feb; 138(1):43-54. PubMed ID: 30617670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local Interactions between Steady-State Visually Evoked Potentials at Nearby Flickering Frequencies.
    Liza K; Ray S
    J Neurosci; 2022 May; 42(19):3965-3974. PubMed ID: 35396325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Customized stimulation enhances performance of independent binary SSVEP-BCIs.
    Lopez-Gordo MA; Prieto A; Pelayo F; Morillas C
    Clin Neurophysiol; 2011 Jan; 122(1):128-33. PubMed ID: 20573542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Objective assessment of visual acuity: a refined model for analyzing the sweep VEP.
    Strasser T; Nasser F; Langrová H; Zobor D; Lisowski Ł; Hillerkuss D; Sailer C; Kurtenbach A; Zrenner E
    Doc Ophthalmol; 2019 Apr; 138(2):97-116. PubMed ID: 30694438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural dynamics during repetitive visual stimulation.
    Tsoneva T; Garcia-Molina G; Desain P
    J Neural Eng; 2015 Dec; 12(6):066017. PubMed ID: 26479469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study on dynamic model of steady-state visual evoked potentials.
    Zhang S; Han X; Chen X; Wang Y; Gao S; Gao X
    J Neural Eng; 2018 Aug; 15(4):046010. PubMed ID: 29616978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A frequency-tagging electrophysiological method to identify central and peripheral visual field deficits.
    Hébert-Lalonde N; Carmant L; Safi D; Roy MS; Lassonde M; Saint-Amour D
    Doc Ophthalmol; 2014 Aug; 129(1):17-26. PubMed ID: 24817488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hybrid BCI speller paradigm combining P300 potential and the SSVEP blocking feature.
    Xu M; Qi H; Wan B; Yin T; Liu Z; Ming D
    J Neural Eng; 2013 Apr; 10(2):026001. PubMed ID: 23369924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.