BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 32405769)

  • 21. Precision Targeted Mutagenesis via Cas9 Paired Nickases in Rice.
    Mikami M; Toki S; Endo M
    Plant Cell Physiol; 2016 May; 57(5):1058-68. PubMed ID: 26936792
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice.
    Yin X; Biswal AK; Dionora J; Perdigon KM; Balahadia CP; Mazumdar S; Chater C; Lin HC; Coe RA; Kretzschmar T; Gray JE; Quick PW; Bandyopadhyay A
    Plant Cell Rep; 2017 May; 36(5):745-757. PubMed ID: 28349358
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CRISPR/Cas9 Guided Mutagenesis of
    Usman B; Zhao N; Nawaz G; Qin B; Liu F; Liu Y; Li R
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33810044
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Whole genome sequencing reveals rare off-target mutations and considerable inherent genetic or/and somaclonal variations in CRISPR/Cas9-edited cotton plants.
    Li J; Manghwar H; Sun L; Wang P; Wang G; Sheng H; Zhang J; Liu H; Qin L; Rui H; Li B; Lindsey K; Daniell H; Jin S; Zhang X
    Plant Biotechnol J; 2019 May; 17(5):858-868. PubMed ID: 30291759
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Targeted Mutagenesis of the Rice
    Gao Q; Li G; Sun H; Xu M; Wang H; Ji J; Wang D; Yuan C; Zhao X
    Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 31991936
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation.
    Zhang H; Zhang J; Wei P; Zhang B; Gou F; Feng Z; Mao Y; Yang L; Zhang H; Xu N; Zhu JK
    Plant Biotechnol J; 2014 Aug; 12(6):797-807. PubMed ID: 24854982
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Precision genome editing in plants: state-of-the-art in CRISPR/Cas9-based genome engineering.
    Wada N; Ueta R; Osakabe Y; Osakabe K
    BMC Plant Biol; 2020 May; 20(1):234. PubMed ID: 32450802
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inactivation of the β (1, 2)-xylosyltransferase and the α (1, 3)-fucosyltransferase gene in rice (Oryza sativa) by multiplex CRISPR/Cas9 strategy.
    Jung JW; Shin JH; Lee WK; Begum H; Min CH; Jang MH; Oh HB; Yang MS; Kim SR
    Plant Cell Rep; 2021 Jun; 40(6):1025-1035. PubMed ID: 33547931
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A CRISPR/Cas12a-Mediated Sensitive DNA Detection System for Gene-Edited Rice.
    Wang Z; Huang C; Wei S; Zhu P; Li Y; Fu W; Zhang Y
    J AOAC Int; 2023 May; 106(3):558-567. PubMed ID: 36847422
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Marker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR-Cas9.
    Dong OX; Yu S; Jain R; Zhang N; Duong PQ; Butler C; Li Y; Lipzen A; Martin JA; Barry KW; Schmutz J; Tian L; Ronald PC
    Nat Commun; 2020 Mar; 11(1):1178. PubMed ID: 32132530
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient Genome Editing in Rice Protoplasts Using CRISPR/CAS9 Construct.
    Bes M; Herbert L; Mounier T; Meunier AC; Durandet F; Guiderdoni E; Périn C
    Methods Mol Biol; 2021; 2238():173-191. PubMed ID: 33471331
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gene editing by CRISPR/Cas9 in the obligatory outcrossing Medicago sativa.
    Gao R; Feyissa BA; Croft M; Hannoufa A
    Planta; 2018 Apr; 247(4):1043-1050. PubMed ID: 29492697
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-efficiency genome editing using a dmc1 promoter-controlled CRISPR/Cas9 system in maize.
    Feng C; Su H; Bai H; Wang R; Liu Y; Guo X; Liu C; Zhang J; Yuan J; Birchler JA; Han F
    Plant Biotechnol J; 2018 Nov; 16(11):1848-1857. PubMed ID: 29569825
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-throughput detection and screening of plants modified by gene editing using quantitative real-time polymerase chain reaction.
    Peng C; Wang H; Xu X; Wang X; Chen X; Wei W; Lai Y; Liu G; Godwin ID; Li J; Zhang L; Xu J
    Plant J; 2018 Aug; 95(3):557-567. PubMed ID: 29761864
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants.
    Osakabe Y; Watanabe T; Sugano SS; Ueta R; Ishihara R; Shinozaki K; Osakabe K
    Sci Rep; 2016 May; 6():26685. PubMed ID: 27226176
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improvement of multiplex semi-nested PCR system for screening of rare mutations by high-throughput sequencing.
    Zhang Y; Chi X; Feng L; Wu X; Qi X
    Biotechniques; 2019 Dec; 67(6):294-298. PubMed ID: 31621390
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CRISPR/Cas9-Mediated Multiplex Genome Editing of the
    Sun Q; Lin L; Liu D; Wu D; Fang Y; Wu J; Wang Y
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30208656
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic Manipulation of Reactive Oxygen Species (ROS) Homeostasis Utilizing CRISPR/Cas9-Based Gene Editing in Rice.
    Xu S; Chen T; Tian M; Rahantaniaina MS; Zhang L; Wang R; Xuan W; Han Y
    Methods Mol Biol; 2022; 2526():25-41. PubMed ID: 35657510
    [TBL] [Abstract][Full Text] [Related]  

  • 39. H
    Wu TM; Huang JZ; Oung HM; Hsu YT; Tsai YC; Hong CY
    Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31404948
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deletion of a target gene in Indica rice via CRISPR/Cas9.
    Wang Y; Geng L; Yuan M; Wei J; Jin C; Li M; Yu K; Zhang Y; Jin H; Wang E; Chai Z; Fu X; Li X
    Plant Cell Rep; 2017 Aug; 36(8):1333-1343. PubMed ID: 28584922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.