These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32405769)

  • 81. CRISPR/Cas: A powerful tool for gene function study and crop improvement.
    Zhang D; Zhang Z; Unver T; Zhang B
    J Adv Res; 2021 Mar; 29():207-221. PubMed ID: 33842017
    [TBL] [Abstract][Full Text] [Related]  

  • 82. A Highly Efficient Cell Division-Specific CRISPR/Cas9 System Generates Homozygous Mutants for Multiple Genes in
    Feng Z; Zhang Z; Hua K; Gao X; Mao Y; Botella JR; Zhu JK
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30544514
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Efficient Screening of CRISPR/Cas9-Induced Events in Drosophila Using a Co-CRISPR Strategy.
    Kane NS; Vora M; Varre KJ; Padgett RW
    G3 (Bethesda); 2017 Jan; 7(1):87-93. PubMed ID: 27793971
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Genome Editing in Soybean with CRISPR/Cas9.
    Liu J; Gunapati S; Mihelich NT; Stec AO; Michno JM; Stupar RM
    Methods Mol Biol; 2019; 1917():217-234. PubMed ID: 30610639
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Genome-wide analyses of PAM-relaxed Cas9 genome editors reveal substantial off-target effects by ABE8e in rice.
    Wu Y; Ren Q; Zhong Z; Liu G; Han Y; Bao Y; Liu L; Xiang S; Liu S; Tang X; Zhou J; Zheng X; Sretenovic S; Zhang T; Qi Y; Zhang Y
    Plant Biotechnol J; 2022 Sep; 20(9):1670-1682. PubMed ID: 35524459
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Precise Editing of a Target Base in the Rice Genome Using a Modified CRISPR/Cas9 System.
    Lu Y; Zhu JK
    Mol Plant; 2017 Mar; 10(3):523-525. PubMed ID: 27932049
    [No Abstract]   [Full Text] [Related]  

  • 87. CRISPR-mediated accelerated domestication of African rice landraces.
    Lacchini E; Kiegle E; Castellani M; Adam H; Jouannic S; Gregis V; Kater MM
    PLoS One; 2020; 15(3):e0229782. PubMed ID: 32126126
    [TBL] [Abstract][Full Text] [Related]  

  • 88. On- and Off-Target Analyses of CRISPR-Cas12b Genome Editing Systems in Rice.
    Gurel F; Wu Y; Pan C; Cheng Y; Li G; Zhang T; Qi Y
    CRISPR J; 2023 Feb; 6(1):62-74. PubMed ID: 36342783
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Multiplex CRISPR-Cas9 mutagenesis of the phytochrome gene family in Physcomitrium (Physcomitrella) patens.
    Trogu S; Ermert AL; Stahl F; Nogué F; Gans T; Hughes J
    Plant Mol Biol; 2021 Nov; 107(4-5):327-336. PubMed ID: 33346897
    [TBL] [Abstract][Full Text] [Related]  

  • 90. CRISPR/Cas9-Induced Mutagenesis of
    Fang Y; Yang J; Guo X; Qin Y; Zhou H; Liao S; Liu F; Qin B; Zhuang C; Li R
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35955484
    [TBL] [Abstract][Full Text] [Related]  

  • 91. A CRISPR/Cas9-Based System with Controllable Auto-Excision Feature Serving Cisgenic Plant Breeding and Beyond.
    Hu H; Yu F
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628407
    [TBL] [Abstract][Full Text] [Related]  

  • 92. CRISPR/Cas9-Mediated Gene Editing of the Jasmonate Biosynthesis OsAOC Gene in Rice.
    Nguyen TH; Mai HTT; Moukouanga D; Lebrun M; Bellafiore S; Champion A
    Methods Mol Biol; 2020; 2085():199-209. PubMed ID: 31734927
    [TBL] [Abstract][Full Text] [Related]  

  • 93. CRISPR/Cas9 mediated triple signal amplification platform for high selective and sensitive detection of single base mutations.
    Zhou M; Wang H; Li C; Yan C; Qin P; Huang L
    Anal Chim Acta; 2022 Oct; 1230():340421. PubMed ID: 36192055
    [TBL] [Abstract][Full Text] [Related]  

  • 94. CRISPR/Cas9-mediated targeted mutagenesis in Japanese cedar (Cryptomeria japonica D. Don).
    Nanasato Y; Mikami M; Futamura N; Endo M; Nishiguchi M; Ohmiya Y; Konagaya KI; Taniguchi T
    Sci Rep; 2021 Aug; 11(1):16186. PubMed ID: 34376731
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Assessment of the effect of ten heading time genes on reproductive transition and yield components in rice using a CRISPR/Cas9 system.
    Cui Y; Zhu M; Xu Z; Xu Q
    Theor Appl Genet; 2019 Jun; 132(6):1887-1896. PubMed ID: 30887096
    [TBL] [Abstract][Full Text] [Related]  

  • 96. A design optimized prime editor with expanded scope and capability in plants.
    Xu W; Yang Y; Yang B; Krueger CJ; Xiao Q; Zhao S; Zhang L; Kang G; Wang F; Yi H; Ren W; Li L; He X; Zhang C; Zhang B; Zhao J; Yang J
    Nat Plants; 2022 Jan; 8(1):45-52. PubMed ID: 34949802
    [TBL] [Abstract][Full Text] [Related]  

  • 97. A pair of primers facing at the double-strand break site enables to detect NHEJ-mediated indel mutations at a 1-bp resolution.
    Ijaz F; Nakazato R; Setou M; Ikegami K
    Sci Rep; 2022 Jul; 12(1):11681. PubMed ID: 35804017
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Knocking Out MicroRNA Genes in Rice with CRISPR-Cas9.
    Zhou J; Zhong Z; Chen H; Li Q; Zheng X; Qi Y; Zhang Y
    Methods Mol Biol; 2019; 1917():109-119. PubMed ID: 30610632
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Carbon Nanotube-Mediated Plasmid DNA Delivery in Rice Leaves and Seeds.
    Dunbar T; Tsakirpaloglou N; Septiningsih EM; Thomson MJ
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35456898
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Improvement of Rice Agronomic Traits by Editing Type-B Response Regulators.
    Li C; Gong C; Wu J; Yang L; Zhou L; Wu B; Gao L; Ling F; You A; Li C; Lin Y
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430643
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.