These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 32406118)

  • 1. Recent Developments in Heterogeneous Catalytic Routes for the Sustainable Production of Succinic Acid from Biomass Resources.
    Verma M; Mandyal P; Singh D; Gupta N
    ChemSusChem; 2020 Aug; 13(16):4026-4034. PubMed ID: 32406118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expanding the Boundary of Biorefinery: Organonitrogen Chemicals from Biomass.
    Chen X; Song S; Li H; Gözaydın G; Yan N
    Acc Chem Res; 2021 Apr; 54(7):1711-1722. PubMed ID: 33576600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in production of succinic acid from lignocellulosic biomass.
    Akhtar J; Idris A; Abd Aziz R
    Appl Microbiol Biotechnol; 2014 Feb; 98(3):987-1000. PubMed ID: 24292125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Top chemical opportunities from carbohydrate biomass: a chemist's view of the Biorefinery.
    Dusselier M; Mascal M; Sels BF
    Top Curr Chem; 2014; 353():1-40. PubMed ID: 24842622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic processes towards the production of biofuels in a palm oil and oil palm biomass-based biorefinery.
    Chew TL; Bhatia S
    Bioresour Technol; 2008 Nov; 99(17):7911-22. PubMed ID: 18434141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conversion of biomass to selected chemical products.
    Gallezot P
    Chem Soc Rev; 2012 Feb; 41(4):1538-58. PubMed ID: 21909591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review of sustainable biodiesel production using biomass derived heterogeneous catalysts.
    Maroa S; Inambao F
    Eng Life Sci; 2021 Dec; 21(12):790-824. PubMed ID: 34899118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous-Flow Production of Succinic Anhydrides via Catalytic β-Lactone Carbonylation by Co(CO)
    Park HD; Dincă M; Román-Leshkov Y
    J Am Chem Soc; 2018 Aug; 140(34):10669-10672. PubMed ID: 30096234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanostructured Metal Catalysts for Selective Hydrogenation and Oxidation of Cellulosic Biomass to Chemicals.
    Jin X; Fang T; Wang J; Liu M; Pan S; Subramaniam B; Shen J; Yang C; Chaudhari RV
    Chem Rec; 2019 Sep; 19(9):1952-1994. PubMed ID: 30474917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability.
    Mika LT; Cséfalvay E; Németh Á
    Chem Rev; 2018 Jan; 118(2):505-613. PubMed ID: 29155579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomass-derived chemical substitutes for bisphenol A: recent advancements in catalytic synthesis.
    Liguori F; Moreno-Marrodan C; Barbaro P
    Chem Soc Rev; 2020 Sep; 49(17):6329-6363. PubMed ID: 32749443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Advances in Ruthenium-Catalyzed Hydrogenation Reactions of Renewable Biomass-Derived Levulinic Acid in Aqueous Media.
    Seretis A; Diamantopoulou P; Thanou I; Tzevelekidis P; Fakas C; Lilas P; Papadogianakis G
    Front Chem; 2020; 8():221. PubMed ID: 32373576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustainable production of bio-based chemicals and polymers via integrated biomass refining and bioprocessing in a circular bioeconomy context.
    Ioannidou SM; Pateraki C; Ladakis D; Papapostolou H; Tsakona M; Vlysidis A; Kookos IK; Koutinas A
    Bioresour Technol; 2020 Jul; 307():123093. PubMed ID: 32247685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic Upgrading of Fermentation-Derived Organic Acids.
    Varadarajan S; Miller DJ
    Biotechnol Prog; 1999 Oct; 15(5):845-854. PubMed ID: 10514254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in porous and nanoscale catalysts for viable biomass conversion.
    Sudarsanam P; Peeters E; Makshina EV; Parvulescu VI; Sels BF
    Chem Soc Rev; 2019 Apr; 48(8):2366-2421. PubMed ID: 30785143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biorefining of lignocellulosic feedstock--Technical, economic and environmental considerations.
    Luo L; van der Voet E; Huppes G
    Bioresour Technol; 2010 Jul; 101(13):5023-32. PubMed ID: 20093018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Catalytic Reduction of Carboxylic Acid Derivatives and CO
    Toyao T; Hakim Siddiki SMA; Kon K; Shimizu KI
    Chem Rec; 2018 Oct; 18(10):1374-1393. PubMed ID: 30277646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production.
    Ma R; Xu Y; Zhang X
    ChemSusChem; 2015 Jan; 8(1):24-51. PubMed ID: 25272962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molybdenum Carbide: Controlling the Geometric and Electronic Structure of Noble Metals for the Activation of O-H and C-H Bonds.
    Deng Y; Ge Y; Xu M; Yu Q; Xiao D; Yao S; Ma D
    Acc Chem Res; 2019 Dec; 52(12):3372-3383. PubMed ID: 31411856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current technologies, economics, and perspectives for 2,5-dimethylfuran production from biomass-derived intermediates.
    Saha B; Abu-Omar MM
    ChemSusChem; 2015 Apr; 8(7):1133-42. PubMed ID: 25703838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.