These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 32406214)

  • 41. A multipixel diffuse correlation spectroscopy system based on a single photon avalanche diode array.
    Johansson JD; Portaluppi D; Buttafava M; Villa F
    J Biophotonics; 2019 Nov; 12(11):e201900091. PubMed ID: 31339649
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Diffuse correlation spectroscopy with a fast Fourier transform-based software autocorrelator.
    Dong J; Bi R; Ho JH; Thong PS; Soo KC; Lee K
    J Biomed Opt; 2012 Sep; 17(9):97004-1. PubMed ID: 23085922
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Measurement of blood flow velocity in retinal vessels utilizing laser speckle phenomenon.
    Suzuki Y; Masuda K; Ogino K; Sugita T; Aizu Y; Asakura T
    Jpn J Ophthalmol; 1991; 35(1):4-15. PubMed ID: 1832725
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Artificial intelligence-based speckle featurization and localization for ultrasound speckle tracking velocimetry.
    Lee HS; Park JH; Lee SJ
    Ultrasonics; 2024 Mar; 138():107241. PubMed ID: 38232448
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Diffuse correlation spectroscopy measurements of blood flow using 1064 nm light.
    Carp S; Tamborini D; Mazumder D; Wu KC; Robinson M; Stephens K; Shatrovoy O; Lue N; Ozana N; Blackwell M; Franceschini MA
    J Biomed Opt; 2020 Sep; 25(9):. PubMed ID: 32996299
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Role of contrast and fractality of laser speckle image in assessing flow velocity and scatterer concentration in phantom body fluids.
    Lal C; Banerjee A; Sujatha NU
    J Biomed Opt; 2013 Nov; 18(11):111419. PubMed ID: 24247744
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Deep-learning-based 3D blood flow reconstruction in transmissive laser speckle imaging.
    Chen R; Tong S; Miao P
    Opt Lett; 2023 Jun; 48(11):2913-2916. PubMed ID: 37262242
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In vivo lateral blood flow velocity measurement using speckle size estimation.
    Xu T; Hozan M; Bashford GR
    Ultrasound Med Biol; 2014 May; 40(5):931-7. PubMed ID: 24462149
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Using optical fibers with different modes to improve the signal-to-noise ratio of diffuse correlation spectroscopy flow-oximeter measurements.
    He L; Lin Y; Shang Y; Shelton BJ; Yu G
    J Biomed Opt; 2013 Mar; 18(3):037001. PubMed ID: 23455963
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transient Motion Classification Through Turbid Volumes
    Xu S; Liu W; Yang X; Jönsson J; Qian R; McKee P; Kim K; Konda PC; Zhou KC; Kreiß L; Wang H; Berrocal E; Huettel SA; Horstmeyer R
    Front Neurosci; 2022; 16():908770. PubMed ID: 35873809
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Space-directional approach to improve blood vessel visualization and temporal resolution in laser speckle contrast imaging.
    Peréz Corona CE; Peregrina-Barreto H; Ramírez-San-Juan J
    J Biomed Opt; 2019 Dec; 25(3):1-16. PubMed ID: 31833281
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Real-time video-rate perfusion imaging using multi-exposure laser speckle contrast imaging and machine learning.
    Hultman M; Larsson M; Strömberg T; Fredriksson I
    J Biomed Opt; 2020 Nov; 25(11):. PubMed ID: 33191685
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Vessel packaging effect in laser speckle contrast imaging and laser Doppler imaging.
    Fredriksson I; Larsson M
    J Biomed Opt; 2017 Oct; 22(10):1-7. PubMed ID: 29019179
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Validation of speed-resolved laser Doppler perfusion in a multimodal optical system using a blood-flow phantom.
    Jonasson H; Fredriksson I; Larsson M; Strömberg T
    J Biomed Opt; 2019 Sep; 24(9):1-8. PubMed ID: 31512441
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Quantifying tissue properties and absolute hemodynamics using coherent spatial imaging.
    Crouzet C; Dunn CE; Choi B
    J Biomed Opt; 2023 Dec; 28(12):127001. PubMed ID: 38116026
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Extraction of tissue optical property and blood flow from speckle contrast diffuse correlation tomography (scDCT) measurements.
    Zhao M; Huang C; Mazdeyasna S; Yu G
    Biomed Opt Express; 2021 Sep; 12(9):5894-5908. PubMed ID: 34692223
    [TBL] [Abstract][Full Text] [Related]  

  • 57. On the equivalence of speckle contrast-based and diffuse correlation spectroscopy methods in measuring in vivo blood flow.
    Murali K; Nandakumaran AK; Varma HM
    Opt Lett; 2020 Jul; 45(14):3993-3996. PubMed ID: 32667336
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Design, Implementation, and Validation of a Pulsatile Heart Phantom Pump.
    Tuncay V; Zijlstra J; Oudkerk M; van Ooijen PMA
    J Digit Imaging; 2020 Oct; 33(5):1301-1305. PubMed ID: 32779017
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Shunt flow evaluation in congenital heart disease based on two-dimensional speckle tracking.
    Fadnes S; Nyrnes SA; Torp H; Lovstakken L
    Ultrasound Med Biol; 2014 Oct; 40(10):2379-91. PubMed ID: 25023104
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A flexible blood flow phantom capable of independently producing constant and pulsatile flow with a predictable spatial flow profile for ultrasound flow measurement validations.
    Hein IA; O'Brien WD
    IEEE Trans Biomed Eng; 1992 Nov; 39(11):1111-22. PubMed ID: 1487274
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.