BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 3240649)

  • 21. Experimental assessment of electrical impedance imaging for hyperthermia monitoring.
    Conway J; Hawley M; Mangnall Y; Amasha H; van Rhoon GC
    Clin Phys Physiol Meas; 1992; 13 Suppl A():185-9. PubMed ID: 1587098
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A finite difference heat transfer analysis of a percutaneous transluminal microwave angioplasty system.
    Young LA; Boehm RF
    J Biomech Eng; 1993 Nov; 115(4A):441-6. PubMed ID: 8309240
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Monitoring temperature-induced changes in tissue during hyperthermia by impedance methods.
    Gersing E
    Ann N Y Acad Sci; 1999 Apr; 873():13-20. PubMed ID: 10372145
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Changes in muscle temperature induced by 434 MHz microwave hyperthermia.
    Ichinoseki-Sekine N; Naito H; Saga N; Ogura Y; Shiraishi M; Giombini A; Giovannini V; Katamoto S
    Br J Sports Med; 2007 Jul; 41(7):425-9. PubMed ID: 17261552
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Temperature mapping in the canine prostate during transurethrally-applied local microwave hyperthermia.
    Roehrborn CG; Krongrad A; McConnell JD
    Prostate; 1992; 20(2):97-104. PubMed ID: 1372431
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative microwave-induced thermoacoustic tomography.
    Yao L; Guo G; Jiang H
    Med Phys; 2010 Jul; 37(7):3752-9. PubMed ID: 20831083
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The accuracy of temperature measurement from within an interstitial microwave antenna.
    Astrahan MA; Luxton G; Sapozink MD; Petrovich Z
    Int J Hyperthermia; 1988; 4(6):593-607. PubMed ID: 3171255
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of hyperthermia-induced tissue conductivity changes on electrical impedance temperature mapping.
    Esrick MA; McRae DA
    Phys Med Biol; 1994 Jan; 39(1):133-44. PubMed ID: 7651992
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fast reconstruction of resistance images.
    Barber DC; Seagar AD
    Clin Phys Physiol Meas; 1987; 8 Suppl A():47-54. PubMed ID: 3568570
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cardiac tissue ablation with catheter-based microwave heating.
    Rappaport C
    Int J Hyperthermia; 2004 Nov; 20(7):769-80. PubMed ID: 15675671
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-dimensional electrical impedance tomography: a topology optimization approach.
    Mello LA; de Lima CR; Amato MB; Lima RG; Silva EC
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):531-40. PubMed ID: 18269988
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Noninvasive focused monitoring and irradiation of head tissue phantoms at microwave frequencies.
    Karathanasis KT; Gouzouasis IA; Karanasiou IS; Giamalaki MI; Stratakos G; Uzunoglu NK
    IEEE Trans Inf Technol Biomed; 2010 May; 14(3):657-63. PubMed ID: 20350846
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An integrated platform for small-animal hyperthermia investigations under ultra-high-field MRI guidance.
    Curto S; Faridi P; Shrestha TB; Pyle M; Maurmann L; Troyer D; Bossmann SH; Prakash P
    Int J Hyperthermia; 2018 Jun; 34(4):341-351. PubMed ID: 28728442
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Feasibility study of monitoring temperature rise in muscle phantoms by the Electrical Impedance Tomography system during hyperthermia treatment.
    Woo H; Kim Y; Guy A
    J Microw Power Electromagn Energy; 1990; 25(4):241-9. PubMed ID: 2074526
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hyperthermia treatment planning for cervical cancer patients based on electrical conductivity tissue properties acquired in vivo with EPT at 3 T MRI.
    Balidemaj E; Kok HP; Schooneveldt G; van Lier AL; Remis RF; Stalpers LJ; Westerveld H; Nederveen AJ; van den Berg CA; Crezee J
    Int J Hyperthermia; 2016 Aug; 32(5):558-68. PubMed ID: 26982889
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Design and implementation of an improved invasive antenna for microwave hyperthermia].
    Xue Q; Sun B; Chen L; Wang J
    Zhongguo Yi Liao Qi Xie Za Zhi; 2010 Nov; 34(6):427-30. PubMed ID: 21360981
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigation of the thermal and tissue injury behaviour in microwave thermal therapy using a porcine kidney model.
    He X; McGee S; Coad JE; Schmidlin F; Iaizzo PA; Swanlund DJ; Kluge S; Rudie E; Bischof JC
    Int J Hyperthermia; 2004 Sep; 20(6):567-93. PubMed ID: 15370815
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A prototype system and reconstruction algorithms for electrical impedance technique in medical body imaging.
    Kim Y; Woo HW
    Clin Phys Physiol Meas; 1987; 8 Suppl A():63-70. PubMed ID: 3568573
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temperature Monitoring During Microwave Hyperthermia Based on BP-Nakagami Distribution.
    Liu Z; Du Y; Meng X; Li C; Zhou L
    J Ultrasound Med; 2023 Sep; 42(9):1965-1975. PubMed ID: 36880695
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An accurate technique for detailed prostatic interstitial temperature-mapping in patients receiving microwave thermal treatment.
    Larson TR; Collins JM
    J Endourol; 1995 Aug; 9(4):339-47. PubMed ID: 8535464
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.